UNDERGROUND STORAGE TANK ASSESSMENT REPORT

LINDBERG HEAT TREATING COMPANY MELROSE PARK, ILLINOIS

PROJECT NO. 87024.03

DECEMBER 1990

MABBETT, CAPACCIO & ASSOCIATES, INC.
CONSULTANTS AND ENGINEERS
5 ALFRED CIRCLE
BEDFORD, MA 01730

COPYRIGHT 1990, MABBETT, CAPACCIO & ASSOCIATES, INC.

(2) 対象を対象は、自己は、記事できた時間は、より的を対象 に対象が、自己は、は、

医牙唇囊 医斯马克克氏 医硫酸

Santa de 1944 - Perende de la respectation de la complete del la complete de la complete del la complete de la complete del la complete de la complete de la complete del la complete della complete de la complete del la complete del la complete della complete de

Small of the Mit Switch of Artist away Artist make a Mit Switch and Artist are a second of the Color of the C

ACKNOWLEDGEMENT

The tank assessment conducted at 1975 N. Ruby Road, Melrose Park, Illinois was completed in accordance with an established scope of work as defined in Mabbett, Capaccio & Associates, Inc. (MCA) Letter-Agreement dated January 11, 1990, and generally accepted site assessment standards of practice and procedures. The professional opinions and findings presented herein are based on the facts and information conveyed to or observed by MCA during completion of this project. These facts and observations are summarized in the attached report by MCA. If any of the information/facts provided to MCA and used in preparing this report are incorrect, incomplete, or subject to change, MCA would wish to alter its opinion(s) accordingly. In addition, the professional opinions contained in this report are based solely on the laws, regulations, and technical data as known to MCA as of the date of this report and considered applicable to this project.

This report was prepared by the following Mabbett, Capaccio & Associates, Inc. personnel:

Mr. George L. Olson, Environmental Engineer

This report has been reviewed and approved by:

Arthur N. Mabbett, CSP. CHCMC President

Robert S. Roace P. Che, Che, DEE

Vice President Prector of Engineering

- i -

TABLE OF CONTENTS

	Descr	ption Page	<u>}</u>
I		INTRODUCTION	Ι.
II.		SUBSURFACE INVESTIGATIONS	ļ
		A. <u>Drilling and Soil Sampling</u>	
۲.		C. Groundwater Sampling	ì
III.		LAB RESULTS AND DISCUSSION	ŧ
IV.	· .	CONCLUSIONS AND RECOMMENDATIONS	
		LIST OF TABLES	
	NO.	<u>DESCRIPTION</u>	
	,1	Summary of Soil Screening Results	
	2 .	Summary of Groundwater Screening Results	
	3	Summary of Laboratory Results	
		<u>LIST OF FIGURES</u>	
	NO.	<u>DESCRIPTION</u>	
	I-1	Site Location Map	
	I-2	Site Plan	
	1-3	Sample Location Plan	
-		LIST OF APPENDICES	
	NO.	DESCRIPTION	
	A B C	Boring and Well Installation Logs Laboratory Reports Field Activity Sheets	

I. <u>INTRODUCTION</u>

At the request of Lindberg Heat Treating Company (Lindberg), Mabbett, Capaccio & Associates, Inc. (MCA) conducted an assessment of potential soil and groundwater contamination associated with three underground storage tanks (USTs) at Lindberg's 1975 North Ruby Street, Melrose Park, Illinois facility. The site is located at the intersection of North Ruby Street and Indian Boundary Drive, approximately 2.5 miles east of the Route 294 and Route 64 (North Avenue) intersection (Refer to Figure I-1). The purpose of this investigation was to assess the potential release of quench oil from three USTs located under the "Pump House" area of the Lindberg facility. The investigation was conducted in accordance with the Pump House Sampling Plan outlined in the MCA February 1, 1990 letter to the Illinois Environmental Protection Agency (ILEPA), as approved by the ILEPA March 29, 1990 letter. The soil and groundwater beneath the Pump House and adjacent to the three USTs was assessed in accordance with 40 Code of Federal Register (CFR) Part 280-Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tank; Illinois Underground Storage Tank Regulations Part 731; and ILEPA Guidance Manual for Petroleum-Related LUST Cleanups in Illinois, Spring 1990. The three steel, 10,000 gallon, approximately thirty year old USTs were used to store and/or circulate quench oil for process operations. The tanks of concern, UST Nos. 1, 2 and 3, are housed along with UST Nos. 4 and 5 beneath the Pump UST Nos. 4 and 5 are water tanks exempt from House. regulation (Refer to Figure No. 1-2). The investigation included the advancement of seven (7) soil borings, collection of soil samples. installation of five (5) groundwater monitoring wells, and classification and logging A chemical investigation of test boring soil samples. included field screening and laboratory analysis of soil and groundwater samples.

On behalf of Lindberg, MCA made a verbal report to ILEPA of a suspected release of quench oil from USTs at Lindberg's facility on September 8, 1989 (ILEPA Incident No. 891730). Lindberg confirmed the initial report in writing on September 27, 1989. A response to the ILEPA informational request letter dated September 14, 1989 was prepared by MCA and submitted on February 1, 1990. The February 1, 1990 response letter included an update of status regarding initial release confirmation and mitigation efforts, as well as the proposed Pump House Sampling Plan to investigate the suspected release.

The ILEPA approved the Pump House Sampling Plan in a letter dated March 29, 1990. The drilling/well installation specifications were competitively bid and a contractor was selected.

Field activities associated with the UST release assessment were conducted on July 9 through July 13, 1990. Field work included collection of split-spoon soil samples from each of seven borings, located adjacent to the USTs and Pump House. Groundwater samples were collected on September 6, 1990. Soil samples were screened in the field by MCA personnel for total volatile organic compounds (VOCs) using a photoionization meter and delivered to a certified laboratory for total petroleum hydrocarbon (TPH) analysis. VOC analysis was added to the scope of work based on field screening results and observations.

The results of the quantitative laboratory analyses indicated that soil TPH concentrations ranged between non-detectable [less than 40 parts per million (ppm)], equivalent to milligrams per kilogram (mg/kg) in borings B-1, B-5 and B-7; to a maximum value of 65,300 ppm in boring B-4. The total VOC concentration in soil samples ranged from non-detectable (refer to Laboratory Reports, Appendix B, for detection limits) to 188,600 parts per billion (ppb), equivalent to micrograms per kilogram (ug/kg), or less than 0.02 percent total VOCs in boring B-7. The VOCs identified in soil samples included trichloroethene (TCE) and trans-1,2-dichloroethene (t-1,2-DCE).

Groundwater samples collected from the five monitoring wells installed indicated TPH concentrations ranging from non-detectable (less than 0.5 ppm) to a maximum value of 3,346 ppm in monitoring well MCA-2. The total VOCs detected in groundwater samples ranged from non-detectable (refer to Laboratory Reports, Appendix B, for detection limits) to 76,851 ppb in MCA-5. The VOCs identified include: 1,1,-dichloroethane (1,1-DCA); tetrachloroethene (Tetra); 1,2-dichloroethane (1,2-DCA); 1,1,1-trichloroethane (1,1,1-TCA); toluene; vinyl chloride; cis-1,2-dichloroethene (c-1, 2-DCE); t-1,2-DCE; and TCE.

MCA utilized four subcontractors to conduct field activities including: concrete coring, subsurface exploratory drilling, a well elevation survey, and laboratory analyses. Accurate Coring of Des Plaines, IL conducted concrete floor coring activities to allow drilling operations to be conducted interior to the building. Concrete floor cores were 10" in diameter and ranged between 7 and 9 inches in thickness, for

a total of 8 cores. D&G Drilling, Inc. of New Lenox, IL was responsible for advancement of seven borings in which five monitoring wells were installed. One boring location was abandoned after advancement of four feet due to auger refusal. Advanced Surveying and Mapping, Inc. (ASM) of Batavia, IL provided an elevation survey showing elevations of the top of the groundwater monitoring wells and steel casings. Alpha Analytical Laboratories of Westborough, MA performed laboratory analytical work on selected soil and groundwater samples.

II. SUBSURFACE INVESTIGATIONS

A. Drilling and Soil Sampling

During the week of July 9, 1990, an MCA Environmental Engineer, George L. Olson, observed the advancement of seven (7) subsurface test borings and installation of five (5) groundwater monitoring wells, adjacent to the underground storage tanks (UST Nos. 1, 2, and 3) located beneath the Lindberg facility's Pump House. The Pump House is a room located within Lindberg's facility/ manufacturing plant. The borings were drilled using a skid mounted, hollow stem auger rig. Four (4) borings (B-1, B-2, B-3 and B-5) surround and are located immediately outside the Pump House. Two (2) borings were located within the Pump House; boring B-4 between UST Nos. 1 and 2, and boring B-6 between UST Nos. 3 and 4. Boring B-7 was located between the facility's exterior wall and the Pump House's west wall. Refer to Figure I-2 for test boring locations. Borings B-1 through B-6 were located and advanced to determine the horizontal and vertical extent of suspected quench oil contamination as described in the February 1, 1990 MCA letter to the An additional boring, B-7 was installed to further determine the extent of the apparent free product layer of quench oil observed in boring B-3. On behalf of Lindberg, MCA made a verbal report of the apparent free product in B-3 to ILEPA on July 12, 1990. Boring B-1 was advanced to 26 feet below grade; B-2, B-3, B-4, B-6 and B-7 to 13 feet; and B-5 to 20 feet below grade.

Soil samples were collected using a 2-foot long split-spoon sampler. Continuous samples were collected in all borings between 3 and 13 feet below grade (the approximate depth interval of the USTs), and 5 foot intervals thereafter, commencing at 15 feet below grade. Between samples, the split-spoon was decontaminated with an Alconox detergent wash, followed by a methanol rinse and a distilled water rinse. Complete boring logs are included as Appendix A.

Classification of soil at the site indicated fill consisting of gravelly sand with little silt to 3 feet below floor grade and, brown and gray clay with some silt to 26.5 feet (the extent of the deepest boring). Specifically, gravelly sand fill was encountered beneath the eight-inch concrete slab floor to approximately 3 feet below grade. Brown and gray clay, periodically stratified by seams of clay and trace to little sand and

gravel, was encountered in borings B-1, B-3, B-5 and B-7 to thirteen feet below grade (maximum depth of all borings except B-1 and B-5). Borings B-1 and B-5 indicated clay (periodically stratified as described above) to approximately 20.5 feet below grade. At this depth, the subsurface soil became more silty and extended to approximately 26 feet below grade, the bottom of the boring B-1.

Boring samples collected from B-2, B-4 and B-6 consisted of fill material only, apparently due to the subsurface structures (i.e., USTs) in the immediate surroundings. The subsurface soil beneath these structures (i.e., USTs) is anticipated to be natural clay and silt. Borings B-4 and B-6 encountered refusal at 13 feet below grade. The concrete hold-down pads of each UST correspond to this depth, and therefore are anticipated to be the cause of refusal.

All samples were collected by advancing a split-spoon sampler with a 140-pound hammer over a 24-inch vertical drop. The sampler was brought to the surface, split apart and a composite sample was collected. The composite soil samples were obtained by cross-sectioning the split-spoon core sample along its length.

A Photovac, Inc., Total Ionizables Present (TIP) II, photoionization detector was used to screen soil collected during drilling activities at the site. The TIP was used to identify total VOCs with ionization potentials between 0 and 10.2 electron volts (eV). The instrument was calibrated with isobutylene and zero grade air using a 500 milliliter plastic calibration bag before and after each use.

Sample headspace vapor analysis was accomplished by filling a sample container half full with sample, covering the jar with aluminum foil and shaking it for one minute. The sample is allowed to equilibrate to ambient temperature, approximately 80°F, and then analyzed by piercing the foil with the TIP's teflon probe.

The TIP indicated VOC contamination at all locations (Refer to Table 1). However, the correlation between TIP screening results and laboratory analysis is not apparent nor anticipated due to the TIP's qualitative nature. Screening results were used to assist in drilling activities and selecting soil samples for laboratory

analysis. Soil collected from B-3 was observed to be saturated with quench oil. Soil collected from B-7 appeared to emit a solvent-like odor.

Fifteen (15) of thirty-nine (39) soil samples collected were analyzed by Alpha Analytical Laboratories, Inc. of Westborough, MA. The select samples were analyzed for TPHs by EPA Method 418.1 and VOCs by EPA Method 8240. Table 3 presents the laboratory analyses for the select soil samples. The complete laboratory report is also included in Appendix B.

B. Monitoring Well Installation

Monitoring wells (MCA-) were installed in five of the seven borings (B-); B-1 (MCA-1), B-3 (MCA-2), B-5 (MCA-3), B-6 (MCA-4), and B-7 (MCA-5). Based on overall area coverage, borings B-2 and B-4 were properly backfilled and do not contain monitoring wells. All wells are constructed of 2-inch inside diameter, 0.010 inch slot, schedule 40 PVC casing to monitor groundwater. Because clay was encountered at a shallow depth in MCA-1, -2, -3 and -5, wells were installed into clay to collect a groundwater sufficient quantity of Groundwater monitoring sampling/monitoring purposes. wells were installed at the following depth below grade: MCA-1 (9.9 feet), MCA-2 (11.0 feet), MCA-3 (7.7 feet), MCA-4 (10.6 feet) and MCA-5 (7.8 feet). It should be noted that groundwater encountered is perched above the clay beneath the building.

The annular space between the borehole and well screen was backfilled with silica sand to prevent well clogging and enhance well production. A clay seal of bentonite pellets was backfilled above the sand and water table, and another seal was installed below the well to prevent vertical contaminant migration into the deeper portion of the test boring. A protective steel casing was placed over each well and set in concrete. Monitoring well installation reports are included in Appendix A.

C. Groundwater Sampling

On September 6, 1990, a groundwater sample was collected from each well. Prior to sampling, each well was purged by removing a minimum of 3 volumes of standing well water using a precleaned teflon bailer. The temperature, ph and conductivity of the groundwater were measured after removing each well volume of water. Similar readings

between well volumes were used as an indication of an adequately purged well. If temperature, pH and conductivity measurements did not stabilize after removing the third well volume, purging was continued until consistent readings were attained. The recharge rate of MCA-4 and MCA-5 did not permit three full well volumes to be removed prior to sampling. However, parameter stabilization was still achieved. Table 1 summarizes the temperature, pH and conductivity of groundwater measured at the site.

After purging, each well was allowed to recharge to at least 75% of its static water level before sampling, with the exception of MCA-5. Based on MCA-5's very slow recharge rate, a 50% static water level was attained prior to sampling. Groundwater was sampled using a precleaned teflon bailer. To prevent cross contamination between wells, the bailer was washed with an Alconox/water solution, followed by a distilled water rinse, methanol rinse and then a final distilled water rinse before purging/sampling.

D. Groundwater Flow

Groundwater elevations were measured relative to top-of-PVC casing elevations determined by ASM. Elevations are referenced to City of Melrose Park benchmark numbers 105 and 106, as provided by Mr. Charlie Noel, Edwin Hancock Engineering of Westchester, Illinois. The depth to groundwater at each well was measured on September 6, 1990 by MCA personnel with a Sample Pro, Water Level Meter, Model 6000, a product of Q.E.D. Environmental System, Inc., Ann Arbor, MI. The depth to groundwater ranged between 3 to 7 feet below the floor surface. The depth to groundwater at MCA-1, -2, -3, -4 and -5 was 3.94', 4.36', 3.72', 3.71' and 7.29', respectively. The top-of-casing elevations for MCA-1, -2, -3, -4 and -5 are 634.46', 634.45', 634.51', 634.34' and 634.49', respectively.

The groundwater elevations calculated do not indicate a distinct/prevalent groundwater flow direction. The elevation difference of the perched groundwater may be attributed to subsurface structures (e.g., foundation walls, footings, pits, USTs etc.) and the inconsistent substructure soils (i.e., depth of fill). These subsurface conditions likely restrict the flow rate and extent of the perched groundwater table. The groundwater level and movement is also likely influenced by

precipitation. Review of the soil boring logs and subsurface structures indicates that the natural depth below floor grade to clay is approximately 3 feet. Inspection of boring logs B-2, B-4 and B-6 suggest that when the subsurface structures were installed, excavation of the naturally occurring clay was replaced by these structure and surrounded with a gravelly sand fill, hence, the development of subsurface inconsistencies causing localized collection of groundwater.

Regional topography suggests that the indirect surface water receptor of site run-off and perched groundwater appears to be Silver Creek, although this has not been confirmed. Silver Creek is located approximately 1200 feet northeast of the Lindberg facility and flows southeast to the Des Plaines River. The Des Plaines River flows north to south into the Kankakee River. Based on the regional topography, groundwater in primary aquifer beneath the site (not perched groundwater) is expected to flow east towards the Des Plaines River.

Field activity sheets used during each field activity are included in Appendix C.

III. LAB RESULTS AND DISCUSSION

The soil and groundwater samples collected at the site during this investigation were sent to Alpha Analytical Laboratories, Inc. (Alpha). Alpha is a certified laboratory for analysis in many states including: Maine, New Hampshire, Massachusetts, New York, Rhode Island and Connecticut. Selected samples were analyzed for TPH by EPA Method 418.1 and VOCs by EPA Method 8240/624. Results are summarized in Table 3. Complete laboratory reports are included in Appendix B.

A. TPH Results

TPH soil contamination was indicated in four of the seven borings; B-2, B-3, B-4 and B-6. The maximum TPH soil concentrations measured, ranged between 2,280 ppm in B-3 at the 5-7 foot depth interval, to 65,300 ppm in B-4 at the 3-5 foot depth interval. TPH soil concentrations for soil collected from B-1, B-5 and B-7 are below the detection limit of 40 ppm. Although B-3 (MCA-2) had the lowest concentration of TPH among the borings with TPH contamination, B-3 was the only location where free product (four inches of quench oil) was observed. The free product layer thickness has remained essentially static over the period of September 6, 1990 to October 30, 1990.

In spite of the fact that B-3 is the only well with free product, the reasoning for the low TPH results may be explained by the subsurface soil conditions observed at each location. A shallow clay formation is present at B-3, whereas soil at the other locations with detectable concentrations of TPH (B-2, B-4 and B-6) were entirely gravelly sand fill to 13 feet. The low porosity of clay relative to fill prevents the vertical migration of an oil release and therefore the oil is restricted to the overlaying groundwater. Fill, on the other hand, absorbs the oily material and allows the oil to migrate vertically.

Field observations of B-3 indicated that the clay beneath the fill/clay interface did not appear to be saturated with petroleum. Additionally, the petroleum product observed in the soil samples collected from B-3, appeared to be coating the exterior core surface, not saturating the material. This suggests that the auger flights did not seal at the fill/clay interface, thus allowing the petroleum product to be introduced into the sample.

Groundwater sample TPH analyses of monitoring wells MCA-1, -2, -3 and -4 are more indicative of the relative contaminant concentrations at these locations. MCA-1 and MCA-3 did not indicate TPH contamination to the detection limit of 0.5 ppm. TPH contamination in MCA-2 and 4 was detected at 3,346 ppm and 13 ppm, respectively. Monitoring wells were not installed at B-2 and B-4, therefore groundwater quality data is not available at those two locations.

B. VOC Results

VOC contamination was detected in soils collected from B-2, B-3 and B-7. Boring B-1 and B-5 soil samples were below the detection limits for each of the analytical compounds. Boring B-4 and B-6 soils were not analyzed for VOCs based on their locations in relation to the other borings. TCE was detected in soils from B-2, B-3 and B-7 at concentrations of 100 ppb, 230 ppb and 180,000 ppb, respectively. One other VOC, t-1,2-DCE was also detected in soil collected from B-7.

Groundwater samples collected from all monitoring wells on September 6, 1990 indicated VOC contamination with the exception of MCA-4 (located inside the Pump House). The primary contaminant of the perched groundwater in this area is TCE and its biodegradation products including c-1,2-DCE, t-1,2-DCE and vinyl chloride. Other compounds detected include; 1,1-DCA, Tetra, 1,2-DCA and toluene. Monitoring well MCA-5, the most VOC contaminated well, indicated a total VOC concentration of 76,852 ppb, of which 99.8 percent, or 76,700 ppb of the contamination is attributable to TCE (41,000 ppb) and its three biodegradation products (35,700 ppb). The other four contaminants; 1,1-DCA, Tetra, 1,2-DCA and toluene comprise the remaining 0.2 percent or 152 ppb. indicated VOC contamination including TCE (2.1 ppb), c-1,2-DCE (88 ppb) and t-1,2-DCE (3.0 ppb). MCA-2 groundwater analysis detected TCE (11 ppb) and 1,1,1-TCA (38 ppb). MCA-2 is the only well containing 1,1,1-TCA. MCA-3 indicated one compound, c-1,2-DCE at 19 ppb. MCA-4 did not indicate detectable concentrations of any VOC.

The U.S. Environmental Protection Agency (EPA) and the ILEPA have not established groundwater quality standards for VOCs for comparative purposes. The perched groundwater is not used for process operations nor drinking water at the site.

IV. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

Based on field observations, perched groundwater quality and the data presented herein, a release of quench oil, TCE and other VOCs to sub-foundation soil and groundwater has occurred. It is likely that quench oil release(s) were associated with UST and underground piping failure. TCE/solvent release(s) were likely associated with past inadvertent spills from above ground solvent storage and/or process operations, and not with USTs.

Quench oil contamination of subsurface soil and perched groundwater beneath the Pump House and adjacent to UST Nos. 1, 2 and 3 has been confirmed by field observation and laboratory analysis. Quench oil is a petroleum hydrocarbon mixture used to cool heat treated metal parts associated with process work at this facility. oil is a relative inert petroleum mixture characterized by; a boiling point between 550 - 6000F, a flash point of approximately 3750F, specific gravity of less than 1, and negligible vapor pressure and water solubility at standard temperature. The presence of quench oil contamination in the soil and perched groundwater beneath the Pump House [B-4 and B-6 (MW-4)] confirms a release from UST Nos. 2 and 3 and/or associated underground piping. Tank interior inspections conducted on November 17, 1989 revealed two small diameter holes (less than 1/2 inch in diameter) in UST Nos. 2 and 3. UST Nos. 2 and 3 were taken out of service at that time. Although UST No. 1 was observed to be in good structural condition, it was removed from service on December 22, 1989 precautionary measure.

Quench oil contamination of soil and perched groundwater is also apparent immediately west of the Pump House beneath the facility's manufacturing floor, as illustrated by the presence of free phase quench oil (4 inches) on the perched groundwater table in MCA-2. It is likely that the release was associated with the Pump House UST's fill pipeline or an underground return pipeline to the Pump House USTs, from previously closed open top tanks located approximately 40 feet to the southwest (Refer to Figure I-2).

Although MCA-2 indicated free product (quench oil), groundwater recovery activities are not anticipated based on hydrogeologic conditions. These conditions include: a perched groundwater table at approximately 3 feet below grade; a thick clay layer which severely restricts vertical contaminant migration; and subsurface structures, coupled with the clay overburden, appear to confine the free product to a limited area adjacent to MCA-2, beneath the building foundation.

Boring B-7 (MCA-5) was originally intended to determine the extent of free phase quench oil contamination observed at B-3 (MCA-2). Quench oil was not observed in B-7 (as confirmed by laboratory analysis), however, a solvent odor was observed in the test boring soil samples, thus necessitating VOC analysis. The laboratory analysis indicated VOC contamination of the groundwater and soil samples from all boring locations with the exception of B-6 (MCA-4). Although the total VOC concentration at MCA-5 was detected at 188,600 ppb (less than 0.02 percent), analyses of other boring locations indicated considerably lower and even nondetectable VOC concentrations. The other borings are located relatively close to B-7, approximately 60 to 130 feet east. monitoring wells are installed interior to the building and monitor the perched groundwater beneath the building foundation. This suggests that the hydrogeologic site conditions restrict contaminant migration both vertically and horizontally to a substantial degree.

Initial inquiries with Lindberg personnel and the review of available documentation has not confirmed the solvent source or quantity released. However, based on the information examined, the most likely source of solvent contamination appears to be inadvertent spillage of minor quantities over the life of the facility. Additionally, VOC/solvent use is not associated with the Pump House operations or any UST on site. The use of TCE as a degreasing solvent at the Lindberg facility was discontinued in April 1987. The chemical compound 1,1,1—TCA replaced TCE at that time and is currently in use.

Based on available data, and review of existing Federal and Illinois laws and regulations, the nature of the TCE release does not subject it to regulatory notification requirements. The TCE release was not associated with UST operations and therefore is not subject to UST release reporting requirements. Nor is the release subject to Comprehensive Environmental Response

Compensation and Liability Act (CERCLA) or Resource Conservation and Recovery Act (RCRA) reporting requirements, because a reportable quantity of 100 pounds TCE within a 24 hour period cannot be confirmed and the Lindberg property is not operated as a Treatment, Storage and Disposal Facility (TSDF). However, due to the existence of TCE in subsurface soil and perched groundwater beneath the facility's foundation, and in keeping with environmental policy, Lindberg wishes to provide this information to ILEPA in good faith.

B. Recommendations

Based on the information summarized herein, MCA recommends completion of the following additional investigative activities to more clearly define the extent of free phase quench oil adjacent to MCA-2 and the necessity of free product recovery.

- 1. Install 2 additional monitoring wells. Monitoring wells (MCA-6 and 7) located north and south of MCA-2, advanced to an approximate depth of 10 feet, to define the extent of free product (quench oil) in the vicinity of MCA-2. The additional information collected from MCA-6 and MCA-7 will assist in determining the need for installing and operating a free product recovery system.
- Sample the newly installed wells, resample selected existing wells, select soil samples from the newly installed test borings, for analysis of TPH by EPA Method 418.1.
- 3. Tie-in newly installed wells with the existing elevation survey and measure the depth to groundwater, to attempt to determine the prevalent site perched groundwater flow gradient.
- 4. Analyze the existing and new data upon completion of the above activities, and prepare a report to present the results and recommendations for ILEPA review and approval.

TABLE 1
SUMMARY OF SOIL SCREENING RESULTS

Boring	Sample	<u>Depth</u>	<u>Total</u>
Location	Designation	<u>Interval (ft)</u>	<u>VOCs (ppm)</u>
B-1	\$\$-1	3 - 5	4
	\$\$-2	5 - 7	3
	\$\$-3	7 - 9	4
	\$\$-4	9 - 11	5
	\$\$-5	11 - 13	5
	\$\$-6	15 - 17	5
	\$\$-7	19 - 21	5
	\$\$-8	24 - 26	4
B -2	SS-1	3 - 5	300(3)
	SS-2	5 - 7	200(3)
	SS-3	7 - 9	210(3)
	SS-4	9 - 11	210(3)
	SS-5	11 - 13	210(3)
B-3	SS-1	3 - 5	175
	SS-2	5 - 7	50
	SS-3	7 - 9	64
	SS-4	9 - 11	35
	SS-5	11 - 13	15
. B−4	SS-1	3 - 5	54
	SS-2	5 - 7	125
	SS-3	7 - 9	90
	SS-4	9 - 11	50
	SS-5	11 - 13	50
B-5	SS-1	3 - 5	190(3)
	SS-2	5 - 7	150(3)
	SS-3	7 - 9	75(3)
	SS-4	9 - 11	145(3)
	SS-5	11 - 13	88(3)
	SS-6	19 - 21	NA
B-6	SS-1	3 - 5	NR
	SS-2	5 - 7	40
	SS-3	7 - 9	37
	SS-4	9 - 11	32
	SS-5	11 - 13	31

Lindberg Heat Treating Co. 87024.07

December 1990 Page 1 of 2 8724ROMA.020(10)

SUMMARY OF SOIL SCREENING RESULTS (Continued)

Boring Location	<u>Sample</u> <u>Designation</u>	<u>Depth</u> <u>Interval (ft)</u>	<u>Total</u> VOCs (ppm)
B-7	SS-1	3 - 5	(4)
	SS-2	5 - 7	(4)
	SS-3	7 - 9	(4)
	SS-4	9 - 11	(4)
Ž	SS-5	11 - 13	(4)

NOTES:

NA - Not Analyzed.

NR - No Split-Spoon Recovery

- 1. VOC qualitative screening was completed within one hour of collection, on the day of sample collection (July 9-13, 1990) by MCA personnel.
- ppm parts total volatile organic compounds per million parts of sample headspace atmosphere.
- 3. Screening VOC concentrations are presumed incorrect due to excessive water vapor interference within the sample headspace on the screening instrument's (TIP's) detection component.
- 4. Screening was not conducted based on observed apparent solvent content.

TABLE 2
SUMMARY OF GROUNDWATER SCREENING RESULTS

<u>Well No.</u> <u>& Volume</u>	Well Volumes Purged	Temperature (⁰ C)	Conductivity (umhos/cm²)	pH(s.u.)
MCA-1 (0.97 gal)	1 2 3	24.9 24.3 24.3	1030 1030 1025	6.84 6.96 6.92
MCA-2 (1.09 gal)	1 2 3	27.1 27.1 27.2	1040 1000 1020	6.86 6.91 6.92
MCA-3 (0.64 gal)	1 2 3	26.8 27.4 25.7	1120 1120 1110	7.03 7.14 7.06
MCA-4 (1.04 Gal)	1 2 3	28.1 25.8 25.8	900 885 870	7.11 7.23 7.20
MCA-5 (0.14 gal)	1 .2 .3	28.3 28.2 28.5	3580 3520 3500	7.03 6.99 7.23

NOTES:

- Groundwater screening and sampling was conducted September 6, 1990.
- 2. Conductivity and pH meters were calibrated in the field.
- 3. Conductivity measurements are corrected to 25°C.

TABLE 3 SUMMARY OF LABORATORY RESULTS

LINDBERG HEAT TREATING COMPANY 1975 N.RUBY STREET, MELROSE PARK, IL PROJECT NUMBER 87024.03

I. TOTAL PETROLEUM HYDROCARBON ANALYSES: EPA METHOD 418.1

B/MW LOCATION	SOIL SAMPLE DEPTH (ft)	GROUNDWATER (mg/L)	SOIL (mg/L)
B-1(MCA-1)	3-5	LT 0.5	LT 40
B-2	5-7	NA NA	11,800
B-3(MCA-2)	5-7	3,346(1)	2,280
B-4	3-5	NA NA	65,300
B-5(MCA-3)	ALL DEPTHS	LT 0.5	LT 40
B-6(MCA-4)	11-13	13	4,180
B-7(MCA-5)	3-5	NA NA	LT 40

Lindberg Heat Treating Company 87024.03

December 1990 Page 1 of 5 87024.WK1 (10)

TABLE 3 SUMMARY OF LABORATORY RESULTS

LINDBERG HEAT TREATING COMPANY 1975 N.RUBY STREET, MELROSE PARK, IL PROJECT NUMBER 87024.03 (Continued)

II. VOLATILE ORGANIC ANALYSIS: DETECTED COMPOUNDS BY EPA METHOD 624/8240

WELL LOCATION	SOIL SAMPLE DEPTH (ft)	CHEMICAL COMPOUND	GROUNDWATER (ug/L)	SOIL (ug/L)
B-1 (MCA-1)	3-5	1,1-DICHLOROETHANE TETRACHLOROETHENE 1,2-DICHLOROETHANE 1,1,1-TRICHLOROETHANE TOLUENE VINYL CHLORIDE TRANS 1,2-DICHLOROETHENE CIS 1,2-DICHLOROETHENE TRICHLOROETHENE	LT 4.7 LT 4.1 LT 2.8 LT 3.8 LT 6.0 LT 6.5 3.0 88 2.1	LT 235 LT 205 LT 140 LT 190 LT 300 LT 325 LT 80 LT 80 LT 95
B-2	5–7	1,1-DICHLOROETHANE TETRACHLOROETHENE 1,2-DICHLOROETHANE 1,1,1-TRICHLOROETHANE TOLUENE VINYL CHLORIDE TRANS 1,2-DICHLOROETHENE CIS 1,2-DICHLOROETHENE TRICHLOROETHENE	NA NA NA NA NA NA NA NA	LT 235 LT 205 LT 140 LT 190 LT 300 LT 325 LT 80 LT 80 100

Lindberg Heat Treating Company 87024.03

--; December 1990 Page 2 of 5 87024.WK1

TABLE 3 ANALYTICAL SUMMARY

LINDBERG HEAT TREATING COMPANY 1975 N.RUBY STREET, MELROSE PARK, IL PROJECT NUMBER 87024.03 (Continued)

II. VOLATILE ORGANIC ANALYSIS: DETECTED COMPOUNDS BY EPA METHOD 624/8240

WELL LOCATION	SOIL SAMPLE DEPTH (ft)	CHEMICAL COMPOUND	GROUNDWATER (ug/L)	SOIL (ug/L)
B-3 (MCA-2)	57	1,1-DICHLOROETHANE TETRACHLOROETHENE 1,2-DICHLOROETHANE 1,1,1-TRICHLOROETHANE TOLUENE VINYL CHLORIDE TRANS 1,2-DICHLOROETHENE CIS 1,2-DICHLOROETHENE TRICHLOROETHENE	LT 23.5 LT 20.5 LT 14 38 LT 30 LT 32.5 LT 8 LT 8	LT 235 LT 205 LT 140 LT 190 LT 300 LT 325 LT 80 LT 80 230
B-4	3-5	1,1-DICHLOROETHANE TETRACHLOROETHENE 1,2-DICHLOROETHANE 1,1,1-TRICHLOROETHANE TOLUENE VINYL CHLORIDE TRANS 1,2-DICHLOROETHENE CIS 1,2-DICHLOROETHENE TRICHLOROETHENE	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA

Lindberg Heat Treating Company 87024.WK1

December 1990 Page 3 of 5 87024 WK1

TABLE 3 ANALYTICAL SUMMARY

LINDBERG HEAT TREATING COMPANY 1975 N.RUBY STREET, MELROSE PARK, IL PROJECT NUMBER 87024.03 (Continued)

II. VOLATILE ORGANIC ANALYSIS: DETECTED COMPOUNDS BY EPA METHOD 624/8240

WELL LOCATION	SOIL SAMPLE DEPTH (ft)	CHEMICAL COMPOUND	GROUNDWATER (ug/L)	SOIL (ug/L)
B-5 (MCA-3)	ALL DEPTHS	1,1-DICHLOROETHANE TETRACHLOROETHENE 1,2-DICHLOROETHANE 1,1,1-TRICHLOROETHANE TOLUENE VINYL CHLORIDE TRANS 1,2-DICHLOROETHENE CIS 1,2-DICHLOROETHENE TRICHLOROETHENE	LT 4.7 LT 4.1 LT 2.8 LT 3.8 LT 6.0 LT 6.5 LT 1.6 19 LT 1.9	LT 235 LT 205 LT 140 LT 190 LT 300 LT 325 LT 80 LT 80 LT 95
B-6 (MCA-4)	1.1-13	1,1-DICHLOROETHANE TETRACHLOROETHENE 1,2-DICHLOROETHANE 1,1,1-TRICHLOROETHANE TOLUENE VINYL CHLORIDE TRANS 1,2-DICHLOROETHENE CIS 1,2-DICHLOROETHENE TRICHLOROETHENE	LT 23.5 LT 20.5 LT 14 LT 19 LT 30 LT 32.5 LT 8 LT 8 LT 9.5	NA NA NA NA NA NA NA

Lindberg Heat Treating Company 87024.WK1

December 1990 Page 4 of 5 87024.WK1

TABLE 3 ANALYTICAL SUMMARY

LINDBERG HEAT TREATING COMPANY 1975 N.RUBY STREET, MELROSE PARK, IL PROJECT NUMBER 87024.03 (Continued)

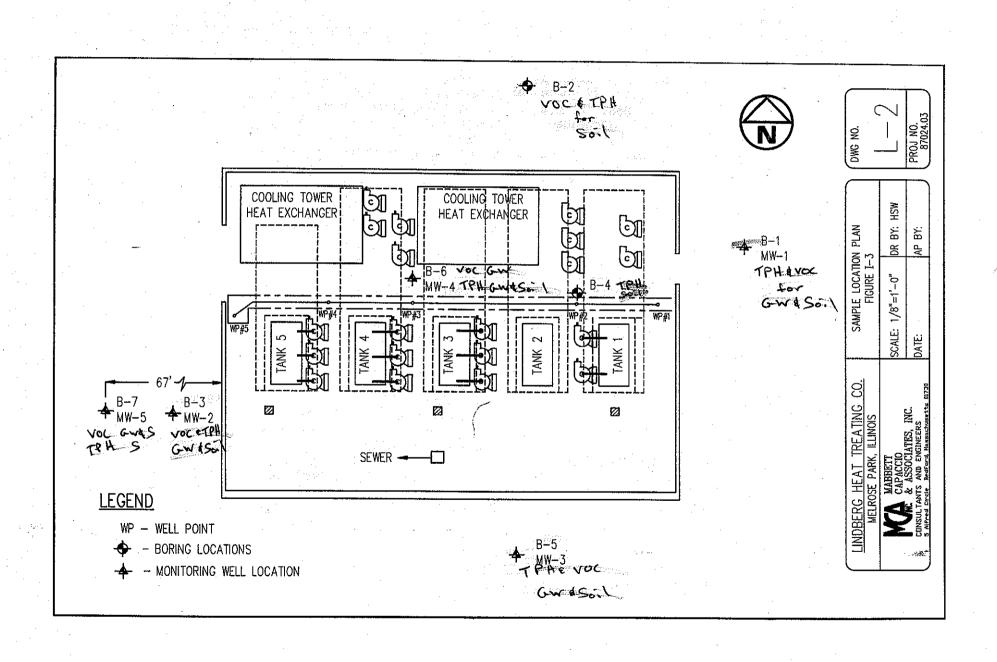
II. VOLATILE ORGANIC ANALYSIS: DETECTED COMPOUNDS BY EPA METHOD 624/8240

WELL LOCATION	SOIL SAMPLE DEPTH (ft)	CHEMICAL COMPOUND	GROUNDWATER (ug/L)	SOIL (ug/L)
B-7 (MCA-5)	3-5	1,1-DICHLOROETHANE TETRACHLOROETHENE 1,2-DICHLOROETHANE 1,1,1-TRICHLOROETHANE TOLUENE VINYL CHLORIDE TRANS 1,2-DICHLOROETHENE CIS 1,2-DICHLOROETHENE TRICHLOROETHENE	6.0 120 3.6 LT 3.8 22 6,600 2,100 27,000 41,000	LT 235 LT 205 LT 140 LT 190 LT 300 LT 325 8,600 LT 80 180,000

NOTES:

ug/L = Micrograms per liter, equivalent to parts per billion.

mg/L = Milligrams per liter, equivalent to parts per million.


NA = Not Analyzed or Not Available.

B = Boring.

MW = Monitoring Well.

LT = Less Than.

- (1) Four (4) inches of floating product noted on 9/6/90.
- 1. All groundwater samples collected on September 6, 1990.
- 2. Soil samples collected between July 9 & 13, 1990.
- 3. The soil analytical data should represent the worst case sample from each respective boring as observed/collected by MCA personnel.
- 4. Analyses conducted by Alpha Analytical Laboratories, Westborough, MA

APPENDIX A

BORING AND WELL INSTALLATION LOGS

MABBETT, CAPACCIO & ASSOCIATES. CONSULTANTS AND ENGINEERS 5 Alfred Circle • Bedford, Massachusetts 01730 • (617) 275-6050 PROJECT/CLIENT PUMP HOUSE ASSESSMENT/LINDBERG HEAT TREATING CO. LOCATION MELROSE PARK, IL __ PROJ. NO. <u>87024.03</u> B-1BORING LOCATION SEE SITE PLAN (B-1; MCA-1) _____DATE_START/FINISH_07/09/90 GROUND ELEVATION (NGVD) 634.46 DRILLED BY D & G / B. THOMASSON PG. 1 OF 1 GROUNDWATER EL/DEPTH 630.52' / 3.94' GL0 DATE _07/09/90 LOGGED BY _ SAMPLE PEN REC BLOWS TYPE SOIL AND ROCK DESCRIPTIONS REMARKS and NO. PER FT. FT. IN. IN. 6 IN. 7" CONCRETE SLAB (6" REINFORCED MESH) FILL-GRAVELLY SAND (40/60), LITTLE SILT, BROWN. 632.46 2 SILTYCLAY - MODERATELY ELASTIC CLAY, TRACE SAND AND SS-1 TIP-4 ppm -¥ 8 FINE GRAVEL, BROWN AND BLACK 3 SILTYCLAY - MODERATELY ELASTIC CLAY, TRACE SAND AND 6 SS-2 24 24 TIP-3 ppm FINE GRAVEL, BROWN AND BLACK 3 SILTYCLAY - LOW ELASTICITY, LITTLE WIDELY GRADED GRAVEL 8 SS-3 24 18 TIP-4 ppm 6 BROWN 9 9 SILTYCLAY - MODERATELY ELASTIC, TRACE TO LITTLE 624.46 10 SS-4 24 21 TIP-5 ppm 16 COARSE GRAVEL, BROWN 18 11 SILTYCLAY - MODERATELY ELASTIC, TRACE WIDELY GRADED 12 SS-5 12 24 18 TIP-5 ppm 23 GRAVEL, BROWN AND GRAY 11

TIP-5 ppm

TIP-5 ppm

TIP-4 ppm

BLOWS PER 6" -140 LB. HAMMER FALLING 30" TO DRIVE A 2.0 IN, O.D. SPLIT SPOON SAMPLER

9

11 16

15

28

27

30 33

24

24

24

24

20

22

SS-6

SS-7

SS-8

4 v.

REC-RECOVERY LENGTH OF SAMPLE SS-SPLIT SPOON SAMPLE

14

16

18

- 20

22

24

-- 26

- 28

30

BAY WORK

the contract of the second

614.46

608.46

 $y_{i}, p_{i}^{\prime} \in \mathbb{R}^{n} \setminus \mathfrak{o}$

PEN-PENETRATION LENGTH OF SAMPLER OR CORE BARREL

ROD-LENGTH OF SOUND CORES >4 IN. /LENGTH CORED,% U-UNDISTURBED SAMPLES

GROUNDWATER

INTERFACE

APPROXIMATE INTERFACE

SILTYCLAY - MODERATELY ELASTIC, TRACE WIDELY GRADED

GRAVEL, BROWN AND GRAY

CLAY - LOW ELASTICITY, TRACE FIND SAND, GRAY

CLAYEYSILT - LOW ELASTICITY, TRACE FINE TO MEDIUM

BOTTOM OF BORING - 26"

BACKFILLED WITH NATURAL MATERIAL AND SEALED WITH TWO

GRAVEL, GRAY.

WELL INSTALLED AT APPROXIMATELY 9'-8".

SANDYSILI - SOME CLAY, GRAY

FEET OF BENTONITE AT 10'.

 ∇

MABBETT, CAPACCIO & ASSOCIATES, INC. CONSULTANTS AND ENGINEERS 5 Alfred Circle • Bedford, Massachusetts 01730 • (617) 275-6050 PROJECT/CLIENT PUMP HOUSE ASSESSMENT/LINDBERG HEAT TREATING CO. LOCATION MELROSE PARK, IL __ PROJ. NO. 87024.03 B-2DATE START/FINISH 07/13/90 <u>/ 07/13/90</u> BORING LOCATION SEE SITE PLAN (B-2) DRILLED BY D & G / B. THOMASSON GROUND ELEVATION (NGVD) _NA PG. 1 OF 1 GROUNDWATER EL./DEPTH NA - NO WELL INSTALLED DATE 07/13/90 GLO LOGGED BY .. SAMPLE DEPTH BLOWS PEN REC TYPE REMARKS SOIL AND ROCK DESCRIPTIONS and NO. PER FT. FT. ĮN. IN. 6 IN. 8" CONCRETE SLAB (6" REINFORCED MESH) FILL - WIDELY GRADED SANDY GRAVEL, BROWN 1 2 3 3 FILL - WIDELY GRADED SANDY GRAVEL, LITTLE CLAY, GRAYISH BROWN. 2 SS-1 24 2 TIP-300 ppm* 3 3 5 2 FILL - WIDELY GRADED GRAVELLY SAND, LITTLE CLAY, GRAYISH BROWN. 2 TIP-200 ppm4 SS-2 24 6.5 2 3 7 4 FILL - WIDELY GRADED GRAVELLY SAND, LITTLE SILTY CLAY, GRAYISH BROWN. 8 SS-3 24 TIP-210 ppm* 2 9 28 FILL - WIDELY GRADED GRAVELLY SAND, SOME SILT, GRAYISH BROWN. 14 SS-4 24 16 TP-210 ppm* 10 6 12 11 7 8 SS-5 24 10.5 TIP-210 ppm+ 12 FILL - SIMILAR TO SS-4 5 13 BOTTOM OF BORING - 13'. BACKFILLED WITH NATURAL MATERIAL. NO MONITORING WELL INSTALLED. - PRESUMED INCORRECT 14 15 ROD-LENGTH OF SOUND CORES >4 IN./LENGTH CORED.X BLOWS PER 6" -140 LB. HAMMER FALLING 30" TO DRIVE A 2.0 IN. O.D. SPLIT SPOON SAMPLER U-UNDISTURBED SAMPLES PEN-PENETRATION LENGTH OF SAMPLER OR CORE BARREL GROUNDWATER 뫂 REC-RECOVERY LENGTH OF SAMPLE INTERFACE SS-SPLIT SPOON SAMPLE APPROXIMATE INTERFACE

BORING	CUENT PLOCATION	SEE	OUSE /	ISSESSMENT/ PLAN (B-3.M	LINDBERG H		NG CO. LOCATIO	edford, Massachusetts 01730 ◆ (617) 275-6050 ON MELROSE PARK, IL PROJ. NO. 87024.03 TART/FINISH 07/10/90 / 07/10/90 BY D & G / B. THOMASSON
	WATER EL./	•	•	0.09' / 4.36'			LOGGED	100 1 00 1
EL. FT,	DEPTH FT.		TYPE and NO.	SAM BLOWS PER 6 IN.	PLE PEN IN,	REC IN.	REMARKS	SOIL AND ROCK DESCRIPTIONS
1.	-	TT		VIII.		1	<u></u>	8" CONCRETE SLAB (6" REINFORCED MESH) —
633.45	<u> </u>							FILL - WIDELY GRADED SANDY GRAVEL, BROWN
	<u> -</u> 2							
.•	3		SS-1	1	24	10	TIP~175ppm~ \	SELTY CLAY — MODERATELY ELASTIC, LITTLE FINE TO MEDIUM SAND AND COARSE GRAVEL, BROWN AND BLACK.
629.45	- - - 5	2		3			ii - 135ppii - =	
	- 6		S-2	* ************************************	24	5.5	ТР—50ppm	SILTY CLAY — MODERATELY ELASTIC, TRACE WIDELY GRADED SAND AND GRAVEL, BROWN AND BLACK.
	- 7 - - 8 - 8	_ \$	S-3	3 4 6	24	22	TIP-64ppm	SILTY CLAY — MODERATELY ELASTIC, LITTLE MEDIUM TO COARSE SAND, GRAY.
624.45	- g - 10 	S	S-4	6 8 14	24	24	ПР—35ррт	SILTY CLAY - LOW ELASTICITY, LITTLE FINE TO MEDIUM SAND, TRACE WIDELY GRADED GRAVEL, BROWN AND GRAY.
	- 11 12	s	S-5	16 7 13	24	18	TIP-15ppm	
	— 13	1 80 C	of self-self-self-self-self-self-self-self-	15 17	i inglikazione la	ina Separa		SILTY CLAY - SIMILAR TO SS-4 BOTTOM OF BORING - 13'. BACKFILLED AND SEALED WITH BENTONITE AT 11 FEET.
520.4 5	— 14 - - - - 15		e se et e e	sti va ti ik	- + + + + + + + + + + + + + + + + + + +		e de la companya de l La companya de la companya de	WELL INSTALLED AT APPROXIMATE 10'-8".
PEN REC	SPU	it spoc Ion Len Lengti	in Sam Igth o H of S	F SAMPLER OF			O.D.	ROD-LENGTH OF SOUND CORES >4 IN./LENGTH CORED.X U-UNDISTURBED SAMPLES GROUNDWATER INTERFACE

,# . **

	M	INC. co	etnatluzn	AND ENGI	NEERS 5	Alfred Circle • B	& ASSOCIATES, INC.	
PROJECT/CUENT PUMP HOUSE ASSESSMENT/LINDBERG HEAT TREATING CO. LOCATION MELROSE PARK, IL PROJ. NO. 87024.03 BORING LOCATION SEE SITE PLAN (B-4) DATE START/FINISH 07/11/90 / 07/11/90 DRILLED BY D & G / B. THOMASSON								
GROUND E	ELEVATION (I	NGVD) <u>NA</u>	NO BOLL	INSTALLED			BY D & G / B. THOMASSON BY GLO DATE 07/11/90 PG. 1 OF 1	
		PIHNA	NO WELL I			LOGGED	BY GLO DATE 07/11/90 PG. 1 OF 1	
EL. FT.	DEPTH FT.	TYPE and NO.	BLOWS PER 6 IN.	PEN IN.	REC IN.	REMARKS	SOIL AND ROCK DESCRIPTIONS	
			<u> </u>	<u> </u>	T	ł	a rije ou oprati et an dez priuronoro urcia)	
	ו ו						8.5" CONCRETE SLAB (6" REINFORCED MESH)	
	_ 1						FILL - WIDELY GRADED GRAVELLY SAND, LITTLE SILT, BLACK, GRAY AND BROWN.	
	┝、│			ļ	1		<u>-</u>	
	2				ľ		-	
	- 3							
	-		1 2				FILL — WIDELY GRADED GRAVELLY SAND, LITTLE SILT, BLACK, GRAY AND BROWN.	
	— 4	SS-1		24	7	TIP54ppm ▽		
	_		2				-	
i	[2				<u> </u>	
	_ , [2			SOIL SATURATED	<u> </u>	
· ·	- 1			•		WITH QUENCH OIL	FILL - SIMILAR TO SS-1	
	_ ,	SS-2	- 2	24	ব	TIP-125ppm	<u> </u>	
	- "		4				-	
	-	3 1	9				-	
	_ 7	2			<u> </u>		· -	
· •			9	, i			-	
			9				FILL — WIDELY GRADED GRAVELLY SAND, LITTLE SILTY CLAY, BROWN AND DARK GRAY.	
ŀ	8	SS3	-	24	13	TIP90ppm		
	_		.9					
}	-		9				-	
	— 9		2				_	
- }	- [-	"		•	FILL - WIDELY GRADED SANDY GRAVEL, TRACE SILT,	
t	- 10	SS-4	4	24	•	TIP-50ppm	BROWN.	
. [- "	Ø 33-7	7	47	•	iit—Soppiii	grafi sa katawa a katawa ka katawa ka katawa ka katawa ka	
·	- [8					
- [_ 11	4				· · · · · · · · · · · · · · · · · · ·		
ŀ	-		12				-	
t	-		8					
F	 12	SS-5	°	. 24	20	TIP-50ppm	<u> </u>	
İ	-		13				FILL - SIMILAR TO SS-4	
F	•		15				<u> </u>	
gan (S. Agus S.) San San	— 13 13,63,05 1,73,73 — 14	a de la companya de l	Den Meille General	A Property Control	े हार्नु करियों के किया है। अंद्रियम्		AUGER REFUSAL AT 13'. SUSPECTED CONCRETE HOLD-DOWN PAD. BACKFILLED WITH NATURAL MATERIAL. NO WELL INSTALLED.	
]	1	ļ	. [
-	15				ľ		Para Para	
	SPUT	SPOON SAME	MER FALLING PLER SAMPLER OF			0.D.	ROD-LENGTH OF SOUND CORES >4 IN./LENGTH CORED.X U-UNDISTURBED SAMPLES	

SS-SPLIT SPOON SAMPLE

INTERFACE

APPROXIMATE INTERFACE

	M							& ASSOCIATES, INC.
Boring L Bround	OCATION ELEVATION	_SEE (NGVD)	SITE	PLAN (B-5.	MCA-3)	HEAT TREATH	DATE S	N _MELROSE PARK, IL PROJ. NO. 87024.03 B-5 TART/FINISH _07/12/90 /_07/12/90 B-5 BYGLO
EL. FT.	DEPTH FT.	1	YPE and NO.	SAM BLOWS PER 6 IN.		REC IN.	REMARKS	SOIL AND ROCK DESCRIPTIONS
632.51	2							7" CONCRETE SLAB (6" REINFORCED MESH) FILL - SANDY SILT, SOME COARSE GRAVEL AND CLAY, BLACK AND BROWN.
	E 4 	:	55-1	4 7 7 6	24	19	TIP−190ppm+ \	FILL — WIDELY GRADED SANDY CLAY, SOME SILT, BLACK SILTY CLAY — MODERATELY ELASTIC, TRACE FINE TO MEDIUM SAND, BROWN AND GRAY.
	- - 6	s	S-2	1 2 3 4	24	17	TIP−150ppm=	SILTY CLAY - MODERATELY ELASTIC, TRACE FINE TO MEDIUM SAND, BROWN AND GRAY.
	8	s	S-3	4 5 8 9	24	20	TIP-75ppm*	SILTY CLAY — MODERATELY ELASTIC, TRACE FINE SAND AND ————————————————————————————————
24.51	10	s	S-4	6 8 11 13	24	24	TIP145ppm≠	SILTY CLAY - MODERATELY ELASTIC, SOME WIDELY GRADED SAND AND FINE GRAVEL, BROWN SILTY CLAY - LOW ELASTICITY, TRACE TO LITTLE WIDELY GRADED SAND AND GRAVEL, TRACE SHALE, BROWN AND GRAY.
	12 12	s	S5	11 13 21 25	24	24	TIP88ppm+	SAID AND GRAVEL, TRACE TO LITTLE WIDELY GRADED SAND AND GRAVEL, TRACE SHALE, BROWN AND GRAY.
	— 14 — 16 — 18							SILTY CLAY — SIMILAR TO SS-5, BECOMING MORE ELASTIC WITH DEPTH.
4.51	- 20 	SS	6–6	4 10 22 22	24	24	TIP-NA	SILTY CLAY — MODERATELY TO HIGHLY ELASTIC, TRACE TO LITTLE WIDELY GRADED GRAVEL, GRAY.
								BOTTOM OF BORING — 21' BACKFILLED WITH NATURAL FILL, 2' BENTONITE SEAL INSTALLED TO 8'. WELL INSTALLED AT APPROXIMATELY 7'—8'.
	- 26				: ▼ - PR I	ESUMED INC	ORRECT	
 - - -	- 28					1.1		

BLOWS PER $6^{\prime\prime}$ –140 LB. Hammer falling 30° to drive a 2.0 in. o.d. split spoon sampler

PEN-PENETRATION LENGTH OF SAMPLER OR CORE BARREL

REC-RECOVERY LENGTH OF SAMPLE

SS-SPLIT SPOON SAMPLE

├ 30

ROD-LENGTH OF SOUND CORES >4 IN./LENGTH CORED,72

U-UNDISTURBED SAMPLES

☑ GROUNDWATER

INTERFACE

APPROXIMATE INTERFACE

	M	$A = \frac{1}{c}$	AABB.	LLI,	UA1	ALCUIU Alfred Circle • B	& ASSOCIATES, INC.
BORING L	OCATION ELEVATION (_SEE_SITE_F NGVD) <u>63</u>	LAN (B-6:)		EAT TREATI	DATE S	DN MELROSE PARK, IL PROJ. NO. 87024.03 START/FINISH 07/11/90 / 07/11/90 D BY D & G / B. THOMASSON D BY GLO DATE 07/11/90 PG. 1 OF 1
GROUNDW	ATER EL./DI	PIH	0.63' / 3.71' Sami	91 F		LOGGED	OBY GLO DATE 07/11/90 PG. 1 OF 1
FT.	FT.	TYPE and NO.	BLOWS PER 6 IN.	PEN IN.	REC IN.	REMARKS	SOIL AND ROCK DESCRIPTIONS
	F			ŀ			8" CONCRETE SLAB (6" REINFORCED MESH)
633.34	1 1 2						FILL — SANDY SILT, LITTLE WIDELY GRADED GRAVEL, BROWN.
	F			İ			
3	_ 3				<u> </u>		
	<u> </u>		2				
;	- - -	S S-1	2 1	24	0	TP-NA- 목	
629.34	L .		1				
629.34		SS-2	2 3 3	24	4	ПР—40ррм	FILL - MEDIUM SAND, LITTLE WIDELY GRADED GRAVEL AND SILT, LIGHT BROWN.
			5				
	- 7 - 8 	- SS-3	3 5 7 8	24	16	ПР-37ррт	FILL — WIDELY GRADED SANDY GRAVEL, LITTLE SILT, GRAYISH BROWN.
	- " [2		-		7
624.34	- - - - -	5 S-4	3 4 6	24	13	TIP+32ppm	FILL - WIDELY GRADED SANDY GRAVEL, TRACE SILT, BROWN.
- [— 11 -		2				landa da
201.74	- 12 	\$\$-5	5 7 15	24	20	ПР—Зіррт	<u>FILL</u> WIDELY GRADED GRAVELLY SAND, TRACE SILT, LIGHT BROWN.
621.34	— 13 - - — 14						AUGER REFUSAL AT 13'. SUSPECTED CONCRETE HOLD-DOWN PADS. WELL INSTALLED AT APPROXIMATELY 9'-9"
	— 15				·		

PEN-PENETRATION LENGTH OF SAMPLER OR CORE BARREL

REC-RECOVERY LENGTH OF SAMPLE

SS-SPLIT SPOON SAMPLE

U-UNDISTURBED SAMPLES

GROUNDWATER

INTERFACE APPROXIMATE INTERFACE

REC-RECOVERY LENGTH OF SAMPLE

SS-SPLIT SPOON SAMPLE

MABBETT, CAPACCIO & ASSOCIATES, INC. CONSULTANTS AND ENGINEERS 5 Alfred Circle • Bedford, Massachusetts 01730 • (617) 275-6050

round Roundw	elevation (NGVD) <u>634</u> PTH 627	4.49' 7.20' / 7.29'			ORILLET	D BY D & G / B, THOMASSON PG. 1	OF 1
EL FT.	DEPTH FT,	TYPE and	SAMF BLOWS PER	PEN IN.	REC IN.	REMARKS	SOIL AND ROCK DESCRIPTIONS	
		NO.	6 IN.		<u> </u>	<u> </u>		
33.49	1 2						8" CONCRETE SLAB (6" REINFORCED MESH)	
9.49	— 3 - - - - - - - - 5	\$5-1	2 5 4 6	24	20	TIP-NA	SILTY CLAY — MODERATELY ELASTIC, LITTLE WIDELY GRADED SAND AND GRAVEL, BROWN.	-
	- - - 6 - -	SS-2	1 2 4 5	24	20	TIP-NA~ ₩	<u>Silty Clay</u> — Similarto SS-1	
	- - - - 8 - -	\$S-3	3 7 12 15	24	24	TIP-NA	SILTY CLAY — MODERATELY ELASTIC, TRACE FINE SAND AND WIDELY GRADED GRAVEL, BROWN.	
4.49	9 10 11	SS-4	4 11 15 17	24	20	TIPNA	<u>SILTY CLAY</u> — MODERATELY ELASTIC, TRACE FINE SAND, BROWN AND GRAY.	
	- - - 12 -	SS-5	6 12 17 19	24	24	TIP-NA	<u>Silty Clay</u> — moderately elastic, trace fine sand and graded gravel, brown and gray.	WIDELY
521.49	— 13 - - - 14 - - - 15						BOTTOM OF BORING — 13"BACKFILLED AND SEALED WITH BENTONITE TO APPROXIMATEL WELL INSTALLED AT APPROXIMATELY 7"—9.5"	Y 8'.

GROUNDWATER

APPROXIMATE INTERFACE

INTERFACE

MABBETT, CAPACCIO & ASSOCIATES, INC. CONSULTANTS AND ENGINEERS 5 Alfred Circle • Bedford, Massachusetts 01730 • (617) 275-6050 MONITORING WFII INSTALL ATION MCA-1 PROJECT/CLIENT PUMP HOUSE ASSESSMENT / LINDBERG HEAT TREATING CO. PROJ. NO. 87024.03 PG. _ 1 _ OF LOCATION 1975 N. RUBY ST. MELROSE PARK, IL CONTRACTOR D & G DRILLING DRILLER B. THOMASSON BORING NO. B-1 LOCATION SEE SITE LOGGED BY GLO DATE <u>07/09/90</u> PLAN CHECKED BY _ DATE _ 634.46 ELEVATION- TOP OF CASING ELEVATION-TOP OF RISER PIPE 634.22 ELEVATION-GROUND SURFACE ~634,46 FILL 0.667 I.D. OF SURFACE CASING WIDELY GRADED GRAVELLY SAND TO APPROXIMATELY 3' BELOW TYPE OF SURFACE CASING STEEL GRADE, BROWN. DEPTH-BOTTOM OF CASING -0.625 DEPTH-TOP OF BACKFILL SILTY CLAY -ELASTIC, STRATIFIED I.D. OF RISER PIPE 2" WITH TRACE TO LITTLE, WIDELY GRADED GRAVEL AND SAND-SCALE) PVC SCH. 40 TYPE OF RISER PIPE CLAY MIXTURES, BROWN AND GRAY, TO 20'. 0.5625 DIAM. OF BOREHOLE 2 BENTONITE CLAY TYPE OF BACKFILL CONDITION DEPTH-TOP OF SEAL BENTONITE TYPE OF SEAL Sol 2' DEPTH-TOP OF SAND PACK TYPE OF SAND PACK SILICA GENERAL DEPTH-TOP OF SCREEN 2.625 TYPE OF SCREENED SECTION 10 SLOT PVC SCH. 40 I.D. OF SCREENED SECTION CLAYEY SILT -STRATIFIED WITH TRACE FINE SAND AND GRAVELLY CLAY MIXTURE, GRAY TO 26'. 9.865 DEPTH-BOTTOM OF WELL ~10.25 DEPTH-TOP OF SEAL, IF ANY

TYPE OF SEAL

DEPTH-BOTTOM OF BOREHOLE

BENTONITE 2'

MABBETT, CAPACCIO & ASSOCIATES, INC. CONSULTANTS AND ENGINEERS 5 Alfred Circle • Bedford, Massachusetts 01730 • (617) 275-6050 MONITORING WELL INSTALL MCA-2 PROJECT/CLIENT PUMP HOUSE ASSESSMENT / LINDBERG HEAT TREATING CO. . PROJ. NO. 87024.03 PG. _1_ OF. LOCATION 1975 N. RUBY ST. MELROSE PARK. IL. BORING NO. B-3 CONTRACTOR D & G DRILLING DRILLER B. THOMASSON LOCATION : SEE SITE LOGGED BY GLO DATE 07/13/90 PLAN CHECKED BY . 634,45 ELEVATION- TOP OF CASING 634.04 ELEVATION-TOP OF RISER PIPE ~634.45 ELEVATION-GROUND SURFACE 0.667 I.D. OF SURFACE CASING WIDELY GRADED SAND AND GRAVEL STEEL TYPE OF SURFACE CASING WITH LITTLE SILT, GRAYISH BROWN TO APPROXIMATE 3'. DEPTH-BOTTOM OF CASING 0.625 DEPTH-TOP OF BACKFILL-SILTY CLAY ~ STRATIFIED WITH LITTLE SAND LD. OF RISER PIPE AND GRAVEL CLAY MIXTURE TO 7. BROWN AND BLACK. SCALE) TYPE OF RISER PIPE PVC SCH. 40 0.5625 - DIAM. OF BOREHOLE 2 BENTONITE CLAY - TYPE OF BACKFILL CONDITION DEPTH-TOP OF SEAL BENTONITE TYPE OF SEAL 잃 2.5 DEPTH-TOP OF SAND PACK TYPE OF SAND PACK SILICA DEPTH-TOP OF SCREEN 3.58 TYPE OF SCREENED SECTION 10 SLOT PVC SCH. 40 I.D. OF SCREENED SECTION SILTY CLAY -STRATIFIED WITH LITTLE SAND AND GRAVEL CLAY MIXTURES TO 13'. 10.99 DEPTH-BOTTOM OF WELL 11.5 DEPTH-TOP OF SEAL, IF ANY 1.5' OF BENTONITE TYPE OF SEAL DEPTH-BOTTOM OF BOREHOLE

MABBETT, CAPACCIO & ASSOCIATES, INC. CONSULTANTS AND ENGINEERS 5 Alfred Circle • Bedford, Massachusetts 01730 • (617) 275-6050 MONITORING WELL INSTAI MCA-3PROJECT/CLIENT PUMP HOUSE ASSESSMENT / LINDBERG HEAT TREATING CO. PROJ. NO. 87024.03 PG. __1 .OF ____1 LOCATION 1975 N. RUBY ST. MELROSE PARK, IL. DRILLER B. THOMASSON BORING NO. B-5 CONTRACTOR D & G DRILLING LOCATION __SEE_SITE _____ DATE __07/12/90 LOGGED BY GLO PLAN. CHECKED BY ... _ DATE _ 634.51 ELEVATION- TOP OF CASING ELEVATION-TOP OF RISER PIPE 634.19 ~634.51 ELEVATION-GROUND SURFACE 0.667 I.D. OF SURFACE CASING WIDELY GRADED SANDY GRAVEL TYPE OF SURFACE CASING STEEL SOME SILT, BROWN TO APPROXIMATE 4. DEPTH-BOTTOM OF CASING-0.625 DEPTH-TOP OF BACKFILL-SILTY CLAY -STRATIFIED WITH TRACE WIDELY I.D. OF RISER PIPE = ::! GRADED SAND CLAY MIXTURES, BROWN AND CRAY TO TYPE OF RISER PIPE PVC SCH. 40 SCALE) APPROXIMATE 21'. 0.5625 DIAM. OF BOREHOLE 2 BENTONITE CLAY - TYPE OF BACKFILL 0.5 DEPTH-TOP OF SEAL BENTONITE TYPE OF SEAL 1.5 DEPTH-TOP OF SAND PACK TYPE OF SAND PACK SILICA 2.35 DEPTH-TOP OF SCREEN 10 SLOT PVC TYPE OF SCREENED SECTION SCH. 40 LD. OF SCREENED SECTION 7.67 DEPTH-BOTTOM OF WELL ~8.15 DEPTH-TOP OF SEAL, IF ANY **BENTONITE 2'** TYPE OF SEAL DEPTH-BOTTOM OF BOREHOLE BENTONIE SEAL 19' TO BOB (21')

MABBETT, CAPACCIO & ASSOCIATES, INC. CONSULTANTS AND ENGINEERS 5 Alfred Circle • Bedford, Massachusetts 01730 • (617) 275-6050 MONITORING WELL INSTAL ATION REPORT MCA-4 PROJECT/CLIENT PUMP HOUSE ASSESSMENT / LINDBERG HEAT TREATING CO. ____ PROJ. NO. __87024.03 PG. 1 OF_ LOCATION 1975 N. RUBY ST. MELROSE PARK, IL CONTRACTOR D & G DRILLING BORING NO. B-6 DRILLER B. THOMASSON LOGGED BY GLO LOCATION SEE SITE __ DATE <u>__07/11/90</u> PLAN CHECKED BY _ DATE _ ELEVATION- TOP OF CASING 634.03 ELEVATION-TOP OF RISER PIPE ~634.34 ELEVATION-GROUND SURFACE FILL -0.67 - I.D. OF SURFACE CASING GRAVELLY SAND W/LITTLE SILT AND CLAY, BROWN, GRAY TYPE OF SURFACE CASING STEEL AND BLACK. CONCRETE HOLD-DOWN PAD SUSPECTED CAUSE OF REFUSAL AT 13'. DEPTH-BOTTOM OF CASING 0.625 DEPTH-TOP OF BACKFILL I.D. OF RISER PIPE SCALE) PVC SCH. 40 TYPE OF RISER PIPE 0.5625' - DIAM. OF BOREHOLE ഉ <u>S</u> BENTONITE CLAY - TYPE OF BACKFILL CONDITION 0.5 DEPTH-TOP OF SEAL BENTONITE TYPE OF SEAL SOIL 1.75' DEPTH-TOP OF SAND PACK SILICA TYPE OF SAND PACK GENERAL 2.75 DEPTH-TOP OF SCREEN TYPE OF SCREENED SECTION 10 SLOT PVC • SCH, 40 I.D. OF SCREENED SECTION

DEPTH-BOTTOM OF WELL

TYPE OF SEAL

DEPTH-TOP OF SEAL, IF ANY

DEPTH-BOTTOM OF BOREHOLE

9.75' 10'

BENTONITE

13'

MABBETT, CAPACCIO & ASSOCIATES, INC. CONSULTANTS AND ENGINEERS 5 Alfred Circle • Bedford, Massachusetts 01730 • (617) 275-6050 MONITORING WELL INSTALL MCA-5 PROJECT/CLIENT PUMP HOUSE ASSESSMENT / LINDBERG HEAT TREATING CO. PROJ. NO. 87024.03 PG. _1 .OF _ . LOCATION 1975 N. RUBY ST. MELROSE PARK, IL. CONTRACTOR _D & G DRILLING ___ DRILLER B. THOMASSON BORING NO. B-7 LOGGED BY GLO LOCATION : SEE SITE ____ DATE <u>07/13/90</u> __PLAN CHECKED BY . DATE _ 634.49 ELEVATION- TOP OF CASING ELEVATION-TOP OF RISER PIPE 634.10 ~634.49 ELEVATION-GROUND SURFACE FILL -I.D. OF SURFACE CASING 0.67 SILTY ASH, SOME WIDELY GRADED SAND AND GRAVEL TYPE OF SURFACE CASING STEEL BLACK TO APPROXIMATE 3'. DEPTH-BOTTOM OF CASING-0.625 DEPTH-TOP OF BACKFILL SILTY CLAY -I.D. OF RISER PIPE MODERATELY ELASTIC STRATIFIED SCALE) WITH LITTLE WIDELY GRADED TYPE OF RISER PIPE PVC SCH. 40 SAND AND GRAVEL CLAY MIXTURES, BROWN TO APPROXIMATE 7'. 0.5625 DIAM. OF BOREHOLE 2 (NOT TYPE OF BACKFILL BENTONITE CLAY CONDITION DEPTH-TOP OF SEAL 0.5 BENTONITE TYPE OF SEAL S DEPTH-TOP OF SAND PACK 1.4 TYPE OF SAND PACK SILICA SILTY CLAY ~ DEPTH-TOP OF SCREEN 2.4 ELASTIC STRATIFIED WITH 10 SLOT PVC TYPE OF SCREENED SECTION TRACE WIDELY GRADED SAND AND GRAVEL CLAY MIXTURES, BROWN SCH. 40 AND GRAY TO 13'. I.D. OF SCREENED SECTION 7.79 DEPTH-BOTTOM OF WELL 8.25 DEPTH-TOP OF SEAL, IF ANY

TYPE OF SEAL

DEPTH-BOTTOM OF BOREHOLE

BENTONITE 1'

-SAND (11'-9')

-2' BENTONITE TO 13'

APPENDIX B

LABORATORY REPORTS

Project No.

ALPHA ANALYTICAL LABORATORIES Project Name LHT Melves

Eight Walkup Drive Westborough, Massachusetts 01581-1019 (508) 898-9220

NH 198958-A CT PH-0574 MA 086

CERTIFICATE OF ANALYSIS

Mabbett, Capaccio & Associates Laboratory Job Number: Client:

Address: 5 Alfred Circle Invoice Number: 15051

Bedford, MA 01730

Date Received:

07/16/90

George Olson

Date Reported: 07/30/90

Attn:

Client Designation: Project# 87024.03

Delivery Method: Federal Express

ALPHA SAMPLE NUMBER	CLIENT IDENTIFICATION	SAMPLE LOCATION
903632.1	B1-SS1	Melrose Park, IL
903632.1S	B1-SS1	Melrose Park, IL
903632.4	B1-SS4	Melrose Park, IL
903632.4D	B1-SS4	Melrose Park, IL
903632.10	B2-SS2	Melrose Park, IL
903632.13	B2-SS5	Melrose Park, IL
903632.14	B3-SS1	Melrose Park, IL
903632.18	B3-SS5	Melrose Park, IL
903632.19	B4-SS1	Melrose Park, IL
903632.23	B4-SS5	Melrose Park, IL
903632.235	B4-SS5	Melrose Park, IL
903632.24	B5-SS1	Melrose Park, IL
903632.24D	B5-SS1	Melrose Park, IL
903632.27	B5-SS4	Melrose Park, IL
903632.30	B6-SS2	Melrose Park, IL
903632.33	B6-SS5	Melrose Park, IL
903632.34	B7-SS1	Melrose Park, IL
903632.36	B7-SS3	Melrose Park, IL
903632.38	B7-SS5	Melrose Park, IL

ames R. Roth - Laboratory Manager

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 903632.1

Date Received: 07/16/90

Sample Matrix: Solid (results were reported

Date Reported: 07/30/90

on a dry weight basis)

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

Analysis Requested: Analysis as Listed Below

PARAMETER	RESULT	UNITS	S MDL**	REF*	METHOD	DATES	
			·		EXT/PREP	ANALYSIS	
Volatile Organics ***	ND	ug/Kg	**	1	8260	07/17/90	07/26/90
Total Hydrocarbons	ND	mg/Kg	40	2	503BCE	07/16/90	07/17/90
Total Solids	78.9	%	0.1	2.	209A		07/17/90

Volatile Organics 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene %Surrogate Recovery

91% 106% 100%

COMMENTS: * Complete list of References found in Addendum I

^{**} A list of volatile organics analyzed for and their detection limits accompanies this accompanies this report.

^{***} All compounds were below the detection limits except those listed above.

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 903632.18

Date Received: 07/16/90

Sample Matrix: Solid (results were reported

Date Reported:

07/30/90

on a dry weight basis)

Condition of Samples: Satisfactory

Field Prep:

None

Number & Type of Containers: One glass bottle

Analysis Requested: Analysis as Listed Below

Total Hydrocarbons

PARAMETER

95%

ZRECOVERY

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 903632.4

Date Received: 07/16/90

Sample Matrix: Solid (results were reported Date Reported: 07/30/90

on a dry weight basis)

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

PARAMETER	RESULT	UNITS	MDL** REF*		METHOD	DATES	
						EXT/PREP	ANALYSIS
Total Hydrocarbons	ND	mg/Kg	40	2	503BCE	07/16/90	07/17/90
Total Solids	85.6	%	0.1	2	209A		07/17/90

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 903632.4D

Date Received: 07/16/90

Sample Matrix: Solid (results were reported Date Reported: 07/30/90

on a dry weight basis)

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

Analysis Requested: Analysis as Listed Below

PARAMETER	SAMPLE RESULT	REPLICATE RESULT	ZRPD
Total Hydrocarbons	ND	ND	NC

NC = Non calculable RPD

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 903632.10

Date Received: 07/16/90

Sample Matrix: Solid (results were reported

Date Reported: 07/30/90

on a dry weight basis)

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

Analysis Requested: Analysis as Listed Below

PARAMETER	RESULT	UNITS	MDL**	REF*	METHOD	DATES	
						EXT/PREP	ANALYSIS
Volatile Organics **	*						
Trichloroethylene	100	ug/Kg	**	1	8260	07/17/90	07/26/90
Total Hydrocarbons 1	1,800	mg/Kg	40	2	503BCE	07/16/90	07/17/90
Total Solids	85.9	%	0.1	2	209A		07/17/90

Volatile Organics %Surrogate Recovery 1,2-Dichloroethane-d4 110% Toluene-d8 89% 4-Bromofluorobenzene 90%

COMMENTS: * Complete list of References found in Addendum I

** A list of volatile organics analyzed for and their detection limits accompanies this accompanies this report.

*** All compounds were below the detection limits except those listed above.

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 903632.13

Date Received: 07/16/90

Sample Matrix: Solid (results were reported Date Reported:

07/30/90

on a dry weight basis)

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

Analysis Requested: Analysis as Listed Below

PARAMETER	RESULT	UNITS	MDL**	REF*	METHOD	DA	TES
	W.,	. •				EXT/PREP	ANALYSIS
					<u> </u>	 	
Total Hydrocarbons	4,360	mg/Kg	40	.2	503BCE	07/16/90	07/17/90
Total Solids	87.3	%	0.1	2	209A		07/17/90

Volatile Organics %Surrogate Recovery 1,2-Dichloroethane-d4 110% Toluene-d8 89% 4-Bromofluorobenzene 90%

* Complete list of References found in Addendum I

** A list of volatile organics analyzed for and their detection limits accompanies this accompanies this report.

*** All compounds were below the detection limits except those listed above.

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 903632.14

Date Received: 07/16/90

Sample Matrix: Solid (results were reported

Date Reported: 07/30/90

on a dry weight basis)

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

Analysis Requested: Analysis as Listed Below

PARAMETER	RESULT	UNITS	MDL**	REF*	METHOD	DA	TES
						EXT/PREP	ANALYSIS
				N,			
Volatile Organics * Trichloroethylene	** 230	ug/Kg	**	1	8260	07/17/90	07/26/90
Total Hydrocarbons	2,280	mg/Kg	40	2	503BCE	07/16/90	07/17/90
Total Solids	80.1	x	0.1	2	209A		07/17/90

Volatile Organics %Surrogate Recovery 1,2-Dichloroethane-d4 92% Toluene-d8 104% 4-Bromofluorobenzene 104%

COMMENTS: * Complete list of References found in Addendum I

** A list of volatile organics analyzed for and their detection limits accompanies this accompanies this report.

*** All compounds were below the detection limits except those listed above.

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 903632.14D

Date Received: 07/16/90

Sample Matrix: Solid (results were reported

Date Reported: 07/30/90

on a dry weight basis)

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

Analysis Requested: Analysis as Listed Below

PARAMETER	SAMPLE RESULT	REPLICATE RESULT	ZRPD
Volatile Organics *** Trichloroethylene	230	220	4.4

Volatile Organics %Surrogate Recovery 1,2-Dichloroethane-d4 91% Toluene-d8 96% 4-Bromofluorobenzene 105%

COMMENTS: * Complete list of References found in Addendum I

** A list of volatile organics analyzed for and their detection limits accompanies this accompanies this report.

*** All compounds were below the detection limits except those listed above.

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 903632.18

Date Received: 07/16/90

Sample Matrix: Solid (results were reported

Date Reported: 07/30/90

on a dry weight basis)

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

PARAMETER	RESULT	UNITS	MDL**	REF*	METHOD	DA EXT/PREP	TES ANALYSIS
Total Hydrocarbons	733	mg/Kg	40	2	503BCE	07/16/90	07/17/90
Total Solids	86.3	%	0.1	2	209A		07/17/90

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 903632.19

Date Received: 07/16/90

Sample Matrix: Solid (results were reported

Date Reported: 07/30/90

on a dry weight basis)

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

PARAMETER	RESULT	UNITS	MDL**	REF*	METHOD	DA EXT/PREP	TES ANALYSIS
Total Hydrocarbons	65,300	mg/Kg	40	2	503BCE	07/16/90	07/17/90
Total Solids	90.6	%	0.1	2	209A		07/17/90

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 903632.23

Date Received: 07/16/90

Sample Matrix: Solid (results were reported Date Reported: 07/30/90

on a dry weight basis)

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

PARAMETER	RESULT	UNITS	MDL**	REF*	METHOD	DA EXT/PREP	TES ANALYSIS
Total Hydrocarbons	3,060	mg/Kg	40	2	503BCE	07/16/90	07/17/90
Total Solids	84.0	%	0.1	2	209A		07/17/90

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 903632.238

Date Received: 07/16/90

Sample Matrix: Solid (results were reported Date Reported: 07/30/90

on a dry weight basis)

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

Analysis Requested: Analysis as Listed Below

PARAMETER ZRECOVERY

Total Hydrocarbons

99%

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 903632.24

Date Received: 07/16/90

Sample Matrix: Solid (results were reported Date Reported:

07/30/90

on a dry weight basis)

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

Analysis Requested: Analysis as Listed Below

PARAMETER	SAMPLE RESULT	REPLICATE RESULT	ZRPD		
Total Hydrocarbons	ND	ND	NC		

NC = Non calculable RPD

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 903632.24

Date Received: 07/16/90

Sample Matrix: Solid (results were reported Date Reported: 07/30/90

on a dry weight basis)

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

Analysis Requested: Analysis as Listed Below

PARAMETER	RESULT	RESULT UNITS MDL**		REF* METHOD		DATES	
				EXT/PREP	ANALYSIS		
Volatile Organics ***	ND	ug/Kg	**	1	8260	07/17/90	07/26/90
Total Hydrocarbons	ND	mg/Kg	40	2	503BCE	07/16/90	07/17/90
Total Solids	80.8	%	0.1	2	209A		07/17/90

Volatile Organics %Surrogate Recovery 1,2-Dichloroethane-d4 93% Toluene-d8 95% 4-Bromofluorobenzene 110%

COMMENTS: * Complete list of References found in Addendum I

** A list of volatile organics analyzed for and their detection limits accompanies this accompanies this report.

*** All compounds were below the detection limits except those listed above.

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 903632.27

Date Received: 07/16/90

Sample Matrix: Solid (results were reported

Date Reported: 07/30/90

on a dry weight basis)

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

PARAMETER	RESULT	UNITS	MDL**	REF*	METHOD	DATES EXT/PREP ANALYSIS
Total Hydrocarbons	ND	mg/Kg	40	2	503BCE	07/16/90 07/17/90
Total Solids	85.1	%	0.1	2	209A	07/17/90

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 903632.30

Date Received: 07/16/90

Sample Matrix: Solid (results were reported Date Reported: 07/30/90

on a dry weight basis)

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

PARAMETER	RESULT	UNITS	MDL**	REF*	METHOD		TES
						EXT/PREP	ANALYSIS
Total Hydrocarbons	1,280	mg/Kg	40	2	503BCE	07/16/90	07/17/90
Total Solids	83.1	%	0.1	2	209A		07/17/90

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 903632.33

Date Received: 07/16/90

Sample Matrix: Solid (results were reported Date Reported: 07/30/90 on a dry weight basis)

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

PARAMETER	RESULT UNITS MDL** RE	REF*	METHOD	DATES			
						EXT/PREP	ANALYSIS
Total Hydrocarbons	4,180	mg/Kg	40	2	503BCE	07/16/90	07/17/90
Total Solids	83.5	%	0.1	2	209A	- -	07/17/90

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 903632.34

Date Received: 07/16/90

Sample Matrix: Solid (results were reported

Date Reported: 07/30/90

on a dry weight basis)

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

PARAMETER	RESULT UNITS MDL** REF*			METHOD	DATES POT /DDPD ANALYSIS		
-						EXT/PREP	ANALYSIS
Total Hydrocarbons	ND	mg/Kg	40	2	503BCE	07/16/90	07/17/90
Total Solids	86.3	%	0.1	2	209A		07/17/90

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 903632.36

Date Received: 07/16/90

Sample Matrix: Solid (results were reported

Date Reported: 07/30/90

on a dry weight basis)

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

Analysis Requested: Analysis as Listed Below

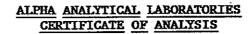
PARAMETER	RESULT	T UNITS MDL** REF*	METHOD	DATES			
						EXT/PREP	ANALYSIS
Tralandia Organia a dolo							
Volatile Organics *** Trichloroethylene	45,000	ug/Kg	**	1	8260	07/17/90	07/27/90
Trans-1,2-dichloro- ethylene	8,600	ug/Kg	**	1	8260	07/17/90	07/27/90
Total Solids	83.4	%	0.1	2	209A		07/27/90

Volatile Organics	%Surrogate	Recovery
1,2-Dichloroethane-d4	89%	
Toluene-d8	98%	•
4-Bromofluorobenzene	95%	

COMMENTS: * Complete list of References found in Addendum I

** A list of volatile organics analyzed for and their detection limits accompanies this report.

*** All compounds were below the detection limits except those listed above.


ALPHA ANALYTICAL LABS VOLATILE ORGANICS ANALYSIS by GC/MS METHOD 8260

903632 Alpha Job Number:

Date Reported: 7/30/90 903632.1, .10, .14, .14D, .24, .36 & .38 Alpha Sample Number(s):

See Below Method Detection Limit:

	COMPOUNDS	
Methylene chloride		140 ug/Kg
1.1-Dichloroethane		235 ug/Kg
Chloroform		80 ug/Kg
Carbon tetrachloride		140 ug/Kg
1,2-Dichloropropane		300 ug/Kg
Dibromochloromethane		155 ug/Kg
1,1,2-Trichloroethane		250 ug/Kg
2-Chloroethylvinyl ether		500 ug/Kg
Tetrachloroethene		205 ug/Kg
Chlorobenzene		300 ug/Kg
Trichlorofluoromethane		250 ug/Kg
1,2-Dichloroethane		140 ug/Kg
1,1,1-Trichloroethane	a	190 ug/Kg
Bromodichloromethane		110 ug/Kg
trans-1,3-Dichloropropene		250 ug/Kg
cis-1,3-Dichloropropene		250 ug/Kg
Bromoform		235 ug/Kg
1,1,2,2-Tetrachloroethane		345 ug/Kg
Benzene		300 ug/Kg
Toluene		300 ug/Kg
Ethyl benzene		360 ug/Kg
Xylenes		500 ug/Kg
Chloromethane		400 ug/Kg
Bromomethane		350 ug/Kg
Vinyl chloride		325 ug/Kg
Chloroethane		375 ug/Kg
1,1-Dichloroethene		140 ug/Kg
Trans-1,2-dichloroethene		80 ug/Kg
Cis-1,2-dichloroethene		80 ug/Kg
Trichloroethene		95 ug/Kg
Dibromomethane		235 ug/Kg
1,4-Dichloro-2-butane		500 ug/Kg
Ethanol		5,000 ug/Kg
Iodomethane		325 ug/Kg
1,2,3-Trichloropropane		300 ug/kg
Styrene		500 ug/Kg
Dichlorodifluoromethane		5,000 ug/Kg
Acetone	te .	5,000 ug/Kg
Carbon disulfide		1,000 ug/Kg
2-Butanone		1,500 ug/Kg
Vinyl acetate		1,500 ug/Kg
4-Methyl-2-pentanone	•	1,000 ug/Kg
2-Hexanone		1,000 ug/Kg

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 903632.38

Date Received: 07/16/90

Sample Matrix: Solid (results were reported

Date Reported: 07/30/90

on a dry weight basis)

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

Analysis Requested: Analysis as Listed Below

PARAMETER	RESULT	UNITS	MDL**	REF*	METHOD	DA EXT/PREP	TES ANALYSIS
	· · · · · · · · · · · · · · · · · · ·				f		
	** 180,000	ug/Kg	**	1	8260	07/17/90	07/27/90
ethylene	1,300	ug/Kg	**	1	8260	07/17/90	07/27/90
Total Solids	84.5	2	0.1	2	209A		07/27/90

Voiatile Organics	%Surrogate	Recovery
1,2-Dichloroethane-d4	101%	
Toluene-d8	106%	
4-Bromofluorobenzene	106%	

COMMENTS: * Complete list of References found in Addendum I

** A list of volatile organics analyzed for and their detection limits accompanies this report.

*** All compounds were below the detection limits except those listed above.

ACCEPTABLE SURROGATE SPIKE RECOVERY LIMITS

FRACTION	SURROGATE COMPOUND	LOW/MEDIUM WATER	LOW/MEDIUM SOIL/SEDIMENT
VOA	Toluene-dg	88-110 %	81-117 %
VOA	4-Bromofluorobenzene	86-115 %	74-121 %
VOA	1,2-Dichloroethane-d4	76-114 %	70-121 %
BNA	Nitrobenzene-d ₅	35-114 %	23-120 %
BNA	2-Fluorobiphenyl	43-116 %	30-115 %
BNA	p-Terphenyl-d ₁₄	33-141 %	18-137 %
BNA	Phenol-ds	10-94 %	24-113 %
BNA	2-Fluorophenol	21-100 %	25-121 %
BNA	2,4,6-Tribromophenol	10-123 %	19-122 %
Pest.	Dibutylchlorendate	24-154 %	20-150 %

ACCEPTABLE MATRIX SPIKE RECOVERY LIMITS

FOR ORGANICS

FRACTION	MATRIX SPIKE COMPOUND	WATER	SOIL/SEDIMENT
AOV	1,1-Dichloroethene	61-145 %	59-172 %
VOA	Trichloroethene	71-120 %	62-137 %
VOA	Chlorobenzene	75-130 %	60-133 %
VOA	Toluene	76-125 %	59-139 %
VOA	Benzene	76-127 %	66-142 %
BN	1,2,4-Trichlorobenzene	39-98 %	38-107 %
BN	Acenaphthene	46-118 %	31-137 %
BN	2,4-Dinitrotoluene	24-96 %	28-89 %
BN	Di-n-butyl phthalate	11-117 %	29-135 %
BN	Pyrene	26-127 %	35-142 %
BN	N-nitros-di-n-propylamine	41-116 %	41-126 %
BN	1,4-Dichlorobenzene	36-97 %	28-104 %
Acid	Pentachlorophenol	9-103 %	17-109 %
Acid	Phenol	12-89 %	26-90 %
Acid	2-Chlorophenol	27-123 %	25-102 %
Acid	4-Chloro-3-methylphenol	23-97 %	26-103 %
Acid	4-Nitrophenol	10-80 %	11-114 %
Pest.	Lindane	56-123 %	46-127 %
Pest.	Heptachlor	40-131 %	35-130 %
Pest.	Aldrin	40-120 %	34-132 %
Pest.	Dieldrin	52-126 %	31-134 %
Pest.	Endrin	56-121 %	42-139 %
Pest.	4,4'-DDT	38-127 %	23-134 %

RELATIVE PERCENT DIFFERENCE

CRITERIA FOR DUPLICATE ANALYSIS

PARAMETER GROUP	. •		WATER						SOIL					
		. !			1.	:	5.		1 1	· ·	:			
Organics:														
Volatile Organics				•	30	%				٠	30	%		
Acid/Base/Neutrals			· : 1.	and the	40	%		٠.		1,10	:40	%		
Pesticides/PCB's					40		•				40	%		
Inorganics:			* * .											
Metals	•				20	%					30	%		
Wet Chemistry				•	30	%	٠.	•			30	%		

ALPHA ANALYTICAL LABS ADDENDUM I REFERENCES

- 1. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. 1986.
- 2. Standard Methods for Examination of Water and Waste Water. APHA-AWWA-WPCF. 16th Edition. 1985.
- 3. Standard Methods for Examination of Water and Waste Water. APHA-AWWA-WPCF. 17th Edition. 1989.
- 4. Methods for Chemical Analysis of Water and Wastes. EPA 600/4-82-055. 1983.
- 5. Oil Spill Identification System. CG-D-52-77 U. S. Coast Guard. 1977.
- 6. Methods for Organic Chemical Analysis of Municipal and Industrial Waste Water. EPA 600/4-82-057. 1982.
- U. S. Department of Health, Education, and Welfare, National Institute of Occupational Safety and Health. D. G. Taylor, [Manual of Analytical Methods, 2nd Ed., DHEW (NIOSH) Pub. No. 77-237A, 1977.]
- 8. Handbook of Analytical Quality Control in Water and Wastewater Laboratories. EPA 600/4-79-019. March 1979.
- 9. The United States Pharmacopeia. The National Formulary. USP 20th Edition. Formulary 15th Edition. 1980.
- 10. Choosing Cost-Effective QA/QC (Quality Assurance/Quality Control) Programs for Chemical Analysis. PB85-241461. U. S. Department of Commerce, National Technical Information Service. August 1985.
- 11. Manual of Analytical Quality Control for Pesticides in Human and Environmental Media. PB 261 019. EPA 600/1-76-017. February 1975.
- 12. Annual Book of ASTM Standards. Sections 0, 3, 5, 6, 8, 9, 11, and 14. American Society for Testing and Materials 1986.
- 13. Federal Register, part II. 40 CFR, part 261, et al, pp. 11798-11877. March 29, 1990.
- 14. Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. Available from USEPA, Cincinnati, 26 West Martin Luther King Drive, Cincinnati, Ohio, 45268.

ALPHA ANALYTICAL LABS ADDENDUM I REFERENCES

- 15. Interim Methods for the Determination of Asbestiform Minerals in Bulk Insulation Samples, Research Triangle Institute, June 1980. Asbestos Containing Materials in School Buildings: A Guidance Document, March 1979, USEPA Document C00090, parts 1 & 2.
- 16. Interim Methods for the Determination of Asbestos in Bulk Insulation Samples (EPA-600/M4-82-020).
- 17. "Prescribed Procedures for Measurement of Radioactivity in Drinking Water," Publication EPA-600/4-80-032, U. S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, August 1980.
- 18. "Clean Harbors Radiological Environmental Analytical Procedures," Clean Harbors Analytical Services, Braintree, MA, October 1985.
- 19. H. M. Prichard and T. F. Gesell, "Rapid Measurement of RN-222 Concentrations in Water with a Commercial Liquid Scintillation Counter", Health Physics, Volume 33, 1977, pp. 577-581.
- 20. "Handbook for Analytical Quality Control in Water and Wastewater Laboratories", March 1979, EPA 600/4-79-019.
- 21. Analysis of PCB's in Transformer Fluid and Waste Oil. EPA 600/4-81-045. 1981.
- 22. Klute, A. 1986, "Methods of Soil Analysis, Part 1", Methods 15-2.2 and 15-5.1. American Society of Agronomy, Madison, WI.
- 23. Exhibit No. 1. Petroleum Oils by Gas Chromatography. Alley Young & Baumartner, Inc., Consulting Engineers, PO Box 2036, Brentwood, TN 37024.

M(MAI CAP	BBETT PACCI SSOCI	O ATES,	INC.			CH RE	COR	oe.cj	ISTOE	<u>0</u> 04	180	8'	PROJE 705	ECT NO.	3	PROJ. NAME			
SITE NAME					SITE LOCATION: MELROSE PARK, IL					TE			INER T		GLASS	HOL	0 For	SEL	ECHON	<u>· </u>
	SIGNATI		M			. :	NO. OF CON- TAINE	RS	THE THE PERSON OF THE PERSON O	100 P	/ e /					0∕V REMAR	0 For 7/16/9 9KS GEON 460N 1	o j	34 Oktor	\gtrsim
SAMPLE NO.			СОМР	GRAB	SAMPLE LOCATION				18/2	19						OR	LEON O	-4741	LIR	3
8	7/990			Maria	B-1886SS-1		100	400	/ir	**	ATA:	PW.	de la compa	À. 4						
	7-9	12:05	~~		B-1 22-3 B-1 22-5		1													
		12:15	1/					_												
	7-9			3614.	B=1 SS-Y		2.1.		\times	医疗!	3	4.			<u> </u>					
	7-9	13:c0	<i>V</i> .	<u> </u>	B-1 55-5		(_												
	7-9	13.22			B-1 55-6		. 1													
	7-9	14:25			B-1 SS-7	٠.	-													
	7-9	15:00	6		B-1 SS-8															
	7-13	8:20	1		B-2 55-1															
			300	静煌小,	B-5 22-5		8824	1.	\times	\times	**									
	7-43		V		R-2 55-3		1													
		8:55	5		13-2 55-4		1					<u> </u>								
			21/1		3-2-SS-5		1966	, i	X		2 60	ļ.,	<u> </u>							_
	7-10	ولانكا	質しなる	har:	B=3>55-1		A Walter		X	\times	79.18									
	7-10	12:21	V		B-3 55-2	:					** A ^{±1} .									
	7-10	16:20	V.		B-3 N-3		١													
		16:40			3-3 55-4															
	2-10	17105	1		Company Company	and a deleter of the	and the last	men.	- S	17000	rá.									_
	7-11	11:00	· ·	135,567	B-4 E5 - 1	in the figure				Seys.										
	7-11	11:10	レ	1	8-4 22-5		1		•											-
	7-4	1	1 .		B-4 SC-3	:	1													
	7-11	11.40	J	-	B-4 CC- 24		ŧ													
-	720	NEVS	1		BEA DE			(Cons.)	\mathbf{X}			914								
4					B=7-5-5		417		X	X		3	·							
IEIZINQUI:	SHED BY	NgleN	ATURE):	_	DATE/TIME: RECEIVED BY (SIGN	IATURE):			RELIN	ignisi	HED BY	Y (SIGI	RUTAN	E):		ATE/TIME:	RECEIVED BY	' (SIGNAT	URE):	
ELINQUI					BATE/TIME: RECEIVED BY (SIGN				RELIN	lquisi	IED B	Y (SIGI	NATUR	E):		ATE/TIME:	RECEIVED BY	(SIGNAT	URE):	_

RECEIVED BY (SIGNATURE):

MCA-SF1

RELINQUISHED BY (SIGNATURE):

DATE/TIME: LABORATORY

Distribution: Original accompanies shipment; copy to master file

2 Week TPH

DATE/TIME:

MABBETT CAPACCIO & ASSOCIATES, INC.	CHAI HECC	N OF C	JSTOC O	004 004	181	8	70.	ест no. Z Ч,	0 3	٩	ROJ. NAME		•
SITE NAME: SITE LOCATION: MELROSE PARK IL			<u>/</u> [TE	CONTA			Gens	s/	HOL	D FOR	SEC 6 17	7041
SAMPLE (SIGNATURE): LOCAL USON SAMPLE DATE TIME COMP GRAB SAMPLE LOCATION NO.	NO. OF CON- TAINERS	No.	300	7					,	O/U REMARI	D FOR . 7/16/90 S BEDECON 1-EON LA	OLSON	Zmca
7291105 V B-5 SS-2	l					<i></i>		/ _		0.0.	FEON -F	MOCK)
7-12 11:20 V B-5 SS-3	1												
A MANAGER STATE OF THE STATE OF		X	į										<u> </u>
7-12 1130 V B-5 SS-5						·	1		1.				
7-12 1230 V B-5 SS-6	(
TOPE COSTA CONTRACTOR OF THE PROPERTY OF THE P		X	}										
7-4 14:40 1/ 8-6 55-3	(
7-414:55 V B-655-4	(
15-17-17-5-5-3-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18	i i	X											
7-13 PSA PURA BEEN STREET STREET		X										,	
7-13 Brun V B-7 SS-Z	l l												
7-13 %10:00 B-7 SS-Z			X										
7-13 V 8-7 SS-4	7.2.18.	. A Local and			4								
17-15 16-16 16-16 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 17 17 17 17 17 17 17 17 17 17 17			然	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									
RECEIVOUISHED BY (SIGNATURE): DATE/TIME: RECEIVED BY (SIGNATURE)	:): KSS	RELIN	QUISH	ED BY	(SIGN	ATURI	Ε):		DATE	/TIME: P	ECEIVED BY (S	IGNATURE):	
RELINQUISHED BY (SIGNATURE): DATE/TIME: RECEIVED BY (SIGNATURE	=): 	RELIN	QUISH	ED BY	(SIGN	AŢURI	Ε):		DATE	/TIME: P	ECEIVED BY (S	IGNATURE):	
RELINQUISHED BY (SIGNATURE): DATE/TIME: LABORATORY		RECEI	VED B	Y (SIG	NATUF	IE):				•		C	ATE/TIME:
Distribution: Original accompanies shipment; copy to master file	· · · · · · · · · · · · · · · · · · ·	1											1

DO NOT REMOVE

Eight Walkup Drive project No. Westborough, Massachusetts 01581-1019 (508) 898-9220 Project Name

Project No. 5 10 1-10 Project Name |

MA 086 NH 198958-A

т Рн-0574

CERTIFICATE OF ANALYSIS

Client: Mabbett, Capaccio & Associates

Laboratory Job Number: 904735

Address: 5 Alfred Circle

Invoice Number: 16201

Bedford, MA 01730

Date Received: 09/07/90

Attn:

George Olson

Date Reported: 09/21/90

Client Designation: Project #87024.03

Delivery Method: Federal Express

ALPHA SAMPLE NUMBER CLIE	NT IDENTIFICATION	SAMPLE LOCATION
904735.1	MW-1	Melrose Park, IL
904735.2	MW-2	Melrose Park, IL
904735.2D	MW-2 (Duplicate)	Melrose Park, IL
904735.3	MW-3	Melrose Park, IL
904735.3S	MW-3 (Spike Recovery)	Melrose Park, IL
904735.4	MW-4	Melrose Park, IL
904735.5	MW-5	Melrose Park, IL
904735.6	Tripblank	Melrose Park, IL

Authorized by:

Scott McLean - Laboratory Director

kmg

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 904735.1

Date Received: 09/07/90

Sample Matrix: Liquid

Date Reported: 09/21/90

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle and two VOA vials

Analysis Requested: Total Petroleum Hydrocarbons (IR) and Volatile Organics

PARAMETER	RESULT	UNITS	MDL,**	REF*	METHOD	DA	TES
					•	EXT/PREP	ANALYSIS
				· · · · · · · · · · · · · · · · · · ·	······································		
Total Petroleum		. *				•	•
Hydrocarbons	ND	mg/L	0.5	2	503BE	09/10/90	09/11/90
Volatile Organics ***	ŧ						
Trichloroethylene		ug/L	**	1	8260		09/20/90
Cis-1,2-					,		
dichloroethylene	88	ug/L	**	1 .	8260		09/20/90
Trans-1-2-		-6/		~	Ų		-1,20,50
dichloroethylene	3.0	ug/L	**	·1	8260		09/20/90

Volatile Organics %	Surrogate	Recovery
1,2-Dichloroethane-d4	94%	
Toluene-d8	96%	
4-Bromofluorobenzene	. 91%	

COMMENTS: * Complete list of References found in Addendum I

^{**} A list of volatile organics analyzed for and their detection limits accompanies this report.

^{***} All compounds were below the detection limits except those listed above.

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 904735.2

Date Received: 09/07/90

Sample Matrix: Liquid

Date Reported: 09/21/90

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle and two VOA vials

Analysis Requested: Total Petroleum Hydrocarbons (IR) and Volatile Organics

PARAMETER	RESULT	UNITS	MDL**	REF*	METHOD	DA	TES
				4		EXT/PREP	ANALYSIS
Total Petroleum Hydrocarbons	3,346	mg/L	0.5	2	503BE	09/10/90	09/11/90
Volatile Organics ***		₹'		1	.*		09/21/90
Trichloroethylene 1,1,1-Trichloroethane	11 a 38	ug/L ug/L	** **	1	8260 8260		09/21/90

Volatile Organics &	Surrogate	Recovery
1,2-Dichloroethane-d4	100%	
Toluene-d8	85%	,
4-Bromofluorobenzene	85%	

* Complete list of References found in Addendum I COMMENTS:

** A list of volatile organics analyzed for and their detection limits accompanies this report.

*** All compounds were below the detection limits except those listed above.

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 904735.2D

Date Received: 09/07/90

Sample Matrix: Liquid

Date Reported: 09/21/90

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

Analysis Requested: Total Petroleum Hydrocarbons (IR)

PARAMETER	SAMPLE RESULT	DUPLICATE RESULT	ZRPD	
Total Petroleum			-	* .
Hydrocarbons	3,346	3,270	2%	

COMMENTS: * Complete list of References found in Addendum I

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 904735.3

Date Received: 09/07/90

Sample Matrix: Liquid

Date Reported: 09/21/90

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle and two VOA vials

Analysis Requested: Total Petroleum Hydrocarbons (IR) and Volatile Organics

PARAMETER	RESULT	UNITS	MDL**	REF*	METHOD	DATES	
-, -, -, ,					÷	EXT/PREP	ANALYSIS
Total Petroleum Hydrocarbons	ND	mg/L	0.5	2	503BE	09/10/90	09/11/90
Volatile Organics *** Cis-1,2- dichloroethylene	19	ug/L	**	1	8260		09/20/90

volatile Organics &	Surrogate Recovery	
1,2-Dichloroethane-d4	105%	
Toluene-d8	95%	
4-Bromofluorobenzene	93%	

COMMENTS: * Complete list of References found in Addendum I

** A list of volatile organics analyzed for and their detection

limits accompanies this report.

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 904735.3S

Date Received: 09/07/90

Sample Matrix: Liquid

Date Reported: 09/21/90

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle

Analysis Requested: Total Petroleum Hydrocarbons (IR)

PARAMETER ZRECOVERY

Total Petroleum Hydrocarbons

90%

COMMENTS: * Complete list of References found in Addendum I

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 904735.4

Date Received: 09/07/90

Sample Matrix: Liquid

Date Reported: 09/21/90

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One glass bottle and two VOA vials

Analysis Requested: Total Petroleum Hydrocarbons (IR) and Volatile Organics

PARAMETER	RESULT	UNITS	MDL**	REF*	METHOD		TES
						EXT/PREP	ANALYSIS
Total Petroleum						· ·	
Hydrocarbons	13	mg/L	0.5	2	503BE	09/10/90	09/11/90
Volatile Organics ***	ND	ug/L	**	1	8260		09/21/90

Volatile Organics	<u>%</u>	Surrogate	Recovery
1,2-Dichloroethane-d	4	102%	
Toluene-d8		83%	
4-Bromofluorobenzene		115%	,

COMMENTS: * Complete list of References found in Addendum I

** A list of volatile organics analyzed for and their detection

limits accompanies this report.

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 904735.5

Date Received: 09/07/90

Sample Matrix: Liquid

Date Reported: 09/21/90

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: Two VOA vials

Analysis Requested: Volatile Organics

PARAMETER	RESULT	UNITS	MDL**	REF*	METHOD	DATES	
						EXT/PREP	ANALYSIS
Volatile Organics ***							
1.1-Dichloroethane	6.0	ug/L	**	1	8260		09/20/90
Trichloroethylene 41	=	ug/L	**	1	8260		09/20/90
Tetrachloroethylene	120	ug/L	**	1	8260		09/20/90
Cis-1,2- dichloroethylene 27	,000	ug/L	* *	1	8260		09/20/90
Trans-1,2- dichloroethylene 2	.100	ug/L	**	1	8260	:	09/20/90
1,2-Dichloroethane	3,6	ug/L	**	1	8260		09/20/90
Toluene	22	ug/L	**	1	8260		09/20/90
	,600	ug/L	**	1	8260		09/20/90

Volatile Organics %	Surrogate	Recovery
1,2-Dichloroethane-d4	106%	
Toluene-d8	114%	
4-Bromofluorobenzene	88%	

COMMENTS: * Complete list of References found in Addendum I

** A list of volatile organics analyzed for and their detection limits accompanies this report.

MA 086 NH 198958-A CT PH-0574

Laboratory Sample Number: 904735.6

 $(\overline{})$

Date Received: 09/07/90

Sample Matrix: Water

Date Reported: 09/21/90

Condition of Samples: Satisfactory

Field Prep: None

Number & Type of Containers: One VOA vial

Analysis Requested: Volatile Organics

PARAMETER	RESULT	RESULT UNITS MDL** RI	REF*	METHOD	DATES		
						EXT/PREP	ANALYSIS
	•						
Volatile Organics *	** ND	ug/L	**	1	8260		09/19/90

Volatile Organics	<u>% Surrogate</u> Recovery
1,2-Dichloroethane-d	4 100%
Toluene-d8	87%
4-Bromofluorobenzene	117%

COMMENTS: * Complete list of References found in Addendum I

** A list of volatile organics analyzed for and their detection

limits accompanies this report.

ALPHA ANALYTICAL LABS VOLATILE ORGANICS ANALYSIS by GC/MS METHOD 8260

Alpha Job Number: 904735 Date
Alpha Sample Number(s): 904735.1, .3, .5, .6
Method Detection Limit: Date Reported: 09/21/90

See below

COMPOUNDS

* .		
Methylene chloride		2.8 ug/L
1,1-Dichloroethane		4.7 ug/L
Chloroform		1.6 ug/L
Carbon tetrachloride		2.8 ug/L
1,2-Dichloropropane		6.0 ug/L
Dibromochloromethane		3.1 ug/L
1,1,2-Trichloroethane		5.0 ug/L
2-Chloroethylvinyl ether		10.0 ug/L
Tetrachloroethene		4.1 ug/L
Chlorobenzene		6.0 ug/L
Trichlorofluoromethane		5.0 ug/L
1,2-Dichloroethane		2.8 ug/L
1,1,1-Trichloroethane		3.8 ug/L
Bromodichloromethane		2.2 ug/L
Trans-1,3-Dichloropropene		5.0 ug/L
Cis-1,3-Dichloropropene		5.0 ug/L
Bromoform		4.7 ug/L
1,1,2,2-Tetrachloroethane		6.9 ug/L
Benzene		6.0 ug/L
Toluene		6.0 ug/L
Ethyl benzene	and the second s	7.2 ug/L
Xylenes		10.0 ug/L
Chloromethane		8.0 ug/L
Bromomethane		7.0 ug/L
Vinyl chloride		6.5 ug/L
Chloroethane		7.5 ug/L
1,1-Dichloroethene		2.8 ug/L
Trans-1,2-dichloroethene		1.6 ug/L
Cis-1,2-dichloroethene		1.6 ug/L
Trichloroethene		1.9 ug/L
Dibromomethane		4.7 ug/L
1,4-Dichloro-2-butane		00.0 ug/L
Ethanol	10	0.0 ug/L
Iodomethane		7.0 ug/L
1,2,3-Trichloropropane		6.0 ug/L
Dichlorodifluoromethane		0.0 ug/L
Acetone	the state of the s	0.0 ug/L
Carbon disulfide	·	0.0 ug/L
2-Butanone		0.0 ug/L
Vinyl acetate		10.0 ug/L
4-Methyl-2-pentanone		0.0 ug/L
2-Hexanone		0.0 ug/L
Styrene		.0.0 ug/L

ALPHA ANALYTICAL LABS VOLATILE ORGANICS ANALYSIS by GC/MS METHOD 8260

Date Reported: 09/21/90

Alpha Job Number: 904735 Date Reported: 09
Alpha Sample Number(s): 904735.2 & .4
Method Detection Limit: 5 times greater than listed below

COMPOUNDS

Methylene chloride		3 ug/L
1,1-Dichloroethane		7 ug/L
Chloroform	1.6	ug/L
Carbon tetrachloride		3 ug/L
1,2-Dichloropropane	6.0	ug/L
Dibromochloromethane	3. 1	l ug/L
1,1,2-Trichloroethane	5.0	ug/L
2-Chloroethylvinyl ether		ug/L
Tetrachloroethene	4.1	ug/L
Chlorobenzene		ug/L
Trichlorofluoromethane		ug/L
1,2-Dichloroethane		ug/L
1,1,1-Trichloroethane		ug/L
Bromodichloromethane		ug/L
Trans-1,3-Dichloropropene		ug/L
Cis-1,3-Dichloropropene		ug/L
Bromoform		ug/L
1,1,2,2-Tetrachloroethane	6.9	ug/L
Benzene	6.0	ug/L
Toluene		ug/L
Ethyl benzene	7.2	ug/L
Xylenes	10.0	ug/L
Chloromethane	8.0	ug/L
Bromomethane	7.0	ug/L
Vinyl chloride	6.5	ug/L
Chloroethane	7.5	ug/L
1,1-Dichloroethene	2.8	ug/L
Trans-1,2-dichloroethene	1.6	ug/L
Cis-1,2-dichloroethene	1.6	ug/L
Trichloroethene	1.9	ug/L
Dibromomethane		ug/L
1,4-Dichloro-2-butane	100.0	ug/L
Ethanol	100.0	ug/L
Iodomethane	7.0	ug/L
1,2,3-Trichloropropane	6.0	ug/L
Dichlorodifluoromethane	100.0	ug/L
Acetone	100.0	ug/L
Carbon disulfide		ug/L
2-Butanone		ug/L
Vinyl acetate		ug/L
4-Methyl-2-pentanone		ug/L
2-Hexanone		ug/L
Styrene		ug/L
J -		- C

ALPHA ANALYTICAL LABORATORIES

ACCEPTABLE SURROGATE SPIKE RECOVERY LIMITS

FRACTION	SURROGATE COMPOUND	LOW/MEDIUM WATER	LOW/MEDIUM SOIL/SEDIMENT
VOA	Toluene-d _g	88-110 %	81-117 %
VOA	4-Bromofluorobenzene	86-115 %	74-121 %
VOA	$1,2$ -Dichloroethane- d_4	76-114 %	70-121 %
BNA	Nitrobenzene-d ₅	35-114 %	23-120 %
BNA	2-Fluorobiphenyl	43-116 %	30-115 %
BNA	p-Terphenyl-d ₁₄	33-141 %	18-137 %
BNA	Phenol-d ₅	10-94 %	24-113 %
BNA	2-Fluorophenol	21-100 %	25-121 %
BNA	2,4,6-Tribromophenol	10-123 %	19-122 %
Pest.	Dibutylchlorendate	24-154 %	20-150 %

ALPHA ANALYTICAL LABORATORIES

ACCEPTABLE MATRIX SPIKE RECOVERY LIMITS

FOR INORGANICS

PARAMETER GROUP	WATER	SOIL
Metals	75-125 %	60-140 %
Wet Chemistry	70-130 %	N/A

ALPHA ANALYTICAL LABORATORIES

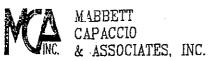
RELATIVE PERCENT DIFFERENCE

CRITERIA FOR DUPLICATE ANALYSIS

PARAMETER GROUP			WATER	SOIL
	<u> </u>			· · · · · · · · · · · · · · · · · · ·
Organics:	•		30 %	30 %
Volatile Organics	1.	$(-1)^{n} \cdot (-1)^{n} $	40 %	40 %
Acid/Base/Neutrals Pesticides/PCB's			40 %	40 %
.	Section 1		4	
Inorganics: Metals			20 %	30 %
Wet Chemistry			30 %	30 %

ALPHA ANALYTICAL LABS ADDENDUM I REFERENCES

- 1. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. 1986.
- 2. Standard Methods for Examination of Water and Waste Water. APHA-AWWA-WPCF. 16th Edition. 1985.
- 3. Standard Methods for Examination of Water and Waste Water. APHA-AWWA-WPCF. 17th Edition. 1989.
- 4. Methods for Chemical Analysis of Water and Wastes. EPA 600/4-82-055. 1983.
- 5. Oil Spill Identification System. CG-D-52-77 U. S. Coast Guard. 1977.
- 6. Methods for Organic Chemical Analysis of Municipal and Industrial Waste Water. EPA 600/4-82-057. 1982.
- 7. U. S. Department of Health, Education, and Welfare, National Institute of Occupational Safety and Health. D. G. Taylor, [Manual of Analytical Methods, 2nd Ed., DHEW (NIOSH) Pub. No. 77-237A, 1977.]
- 8. Handbook of Analytical Quality Control in Water and Wastewater Laboratories. EPA 600/4-79-019. March 1979.
- 9. The United States Pharmacopeia. The National Formulary. USP 20th Edition. Formulary 15th Edition. 1980.
- Choosing Cost-Effective QA/QC (Quality Assurance/Quality Control) Programs for Chemical Analysis. PB85-241461. U. S. Department of Commerce, National Technical Information Service. August 1985.
- 11. Manual of Analytical Quality Control for Pesticides in Human and Environmental Media. PB 261 019. EPA 600/1-76-017. February 1975.
- 12. Annual Book of ASTM Standards. Sections 0, 3, 5, 6, 8, 9, 11, and 14. American Society for Testing and Materials 1986.
- 13. Federal Register, part II. 40 CFR, part 261, et al, pp. 11798-11877. March 29, 1990.
- 14. Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. Available from USEPA, Cincinnati, 26 West Martin Luther King Drive, Cincinnati, Ohio, 45268.


ALPHA ANALYTICAL LABS ADDENDUM I REFERENCES

- 15. Interim Methods for the Determination of Asbestiform Minerals in Bulk Insulation Samples, Research Triangle Institute, June 1980. Asbestos Containing Materials in School Buildings: A Guidance Document, March 1979, USEPA Document C00090, parts 1 & 2.
- 16. Interim Methods for the Determination of Asbestos in Bulk Insulation Samples (EPA-600/M4-82-020).
- 17. "Prescribed Procedures for Measurement of Radioactivity in Drinking Water," Publication EPA-600/4-80-032, U. S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, August 1980.
- 18. "Clean Harbors Radiological Environmental Analytical Procedures," Clean Harbors Analytical Services, Braintree, MA, October 1985.
- 19. H. M. Prichard and T. F. Gesell, "Rapid Measurement of RN-222 Concentrations in Water with a Commercial Liquid Scintillation Counter", Health Physics, Volume 33, 1977, pp. 577-581.
- 20. "Handbook for Analytical Quality Control in Water and Wastewater Laboratories", March 1979, EPA 600/4-79-019.
- 21. Analysis of PCB's in Transformer Fluid and Waste Oil. EPA 600/4-81-045.
- 22. Klute, A. 1986, "Methods of Soil Analysis, Part 1", Methods 15-2.2 and 15-5.1. American Society of Agronomy, Madison, WI.
- 23. Exhibit No. 1. Petroleum Oils by Gas Chromatography. Alley Young & Baumartner, Inc., Consulting Engineers, PO Box 2036, Brentwood, TN 37024.

MC	MABBETT CAPACCIO & ASSOCIATES, INC.							CHAI RECO	N OF CORD	OUSTOI O	<u>0</u> 0 DĀ	754	18	ROJECT NO. 1024.03	PROJ. NAME	
SITE NAME					SITE LOCATION Melrose	Park	IL		10. (1) Letter glass witeflow lide							
	SIGNATI SIGNATI		leo	n				NO. OF CON- TAINERS	'''							
SAMPLE NO.	DATE	TIME	СОМР	GRAB	S/	AMPLE LOCA	ATION	Allene	\(\frac{2}{3}\)	4%%	%			Twowk	10 day TAT	
	9/6/95	J1:30	/	/	MW	-/		3	*	/				1		
	9/6	ll os			MW	-2		3	1	/					<u> </u>	
	9/6	12:05	. /		MW	-3		3	V	V				(21-40 n	1 VoAs for 624	
	9/6	13:58	· [/		MW-	4		3	V	/				(1)-1 64	alass w/ teffon 12	/
	9/6	Rio			MW-	-5		Xa	V	W	-1	10-1	PH,	presen	nd VOAs for 6944 or glass of tellow lig wed wf HC1-418,1	or 503 RC
					Trip	Blank		1	1				-		- 1	
					,								W	Han Fesalts	due 9/21/90.	
												-				
		· - · · · · · · · · · · · · · · · · · · ·					, , , , , , , , , , , , , , , , , , ,									
			÷													
		-														
	٠,٠															
		·														
					-							-				
RELACUIS Lloy				9/	16/40 17:00	- Tople	BY (SIGNATURE	}	100	NOUISH	.V.		*		ME: RECEIVED BY (SIGNATURE):	
RELINOUS	HED BY	(SIGNA	TURE):		* DATE/TIME	RECEIVED	BY (SIGNÀTURE): 	RELI	NOUISI	fED B	Y (SIGN	IATURE	DATE/TII	ME: RECEIVED BY (SIGNATURE):	
RELINQUIS	RELINQUISHED BY (SIGNATURE): DATE/TIME: LABORATORY Distribution: Original accompanies shipment, copy to master file							RECE	EIVED 8	BY (SIC	GNATUI	RE):			DATE/TIME:	

APPENDIX C

FIELD ACTIVITY SHEETS

CONSULTANTS AND ENGINEERS
5 Alfred Circle Bedford, Massachuseits 01730

FIELD ACTIVITY LOG SHEET

PROJ. <u>AHT-MELROSE</u>

PROJ. NO. 87024.03

ACTIVITY NO.

. PESENT AT SITE:

CLIENT: MIKE NELSON - EARL CARLSON

BOB SHALEK -

CONTRACTORS: PETER DAHLBERG - DAHLBERG CONST.
BARRY THOMASSON - DAG DRILLING

CONSULTANTS: DAN DEIVBAN - DEC DRILLING

- ACCURATE CALING DAG,

MCA:

GEORGE L. OLSON

DATE START

ACTIVITY PUMP HOUSE ASSESSMENT CONCRETE CORING, SOIL BORING SS-SAMPLING, SCREENING

WEATHER - INTERIOR

DESCRIPTION OF ACTIVITIES:	PERSONNEL	ACTIVITY NUMBER
DRILLING/BORING LOG	GLO	
MONITORING WELL INSTALLATION REPORT	GLO	
TEST PIT LOG	NA GLO	•
::LD SCREENING SOIL SAMPLES	GLO	
FIELD SCREENING SURFACE WATER	NA	
MONITORING WELL SAMPLING WORK. SHEET	LATER DATE	
FIELD SAMPLING GROUNDWATER	LATER DATE	
AMBIENT AIR MONITORING	GLO	
SAMPLE CHAIN OF CUSTODY 00 480	G10	
HER		

ROUND	/CLIENT OCATION FLEVATION (ATER EL/D		NA NA -	No we	(B-2)	ORILLED BY	1/FINISH 7/13/90 / 7/13/90 B-2
EL FT.	DEPTH.	TYPE and NO.	SAN BLOWS PER 5 IN.	PLE PEN IN.	REC IN.	REMARKS	SOIL AND ROCK DESCRIPTIONS
	2						811 Concrete Slab (6" reinforced mesh) FILL - widely graded sanday gravel, brow
	3 4	Section of the sectio	3 2 3 3	24	2	T.P-300 & ppm	FILL- widely graded sundy gravel, little clay, grayish brown.
	1116	55-2	2 2 3	24	6.5	TIP -200 #	FILL - widely graded gravelly sand, little clay, grayish brown.
	8	With the state of	4 4 4 2	24	5	TIP - 210*	FILL - widely graded sandy gravel, little sifty clay, grayish brown.
	-lo	55-4	12 14 58	24	16	tip-210* ppn	FILL—widely graded gravelly sand, some silt, grayish brown.
	-12	Sylvany Sylvany	7 8 6 3	24	10.5	Tip-210#	FILL - Similar TO SS-4.
	- 14		*-pro	Suned	incorrec	f.	Bottom of Boring - 13'. Backfilled with natural material. No monitoring well installed.

REC-RECOVERY LENGTH OF SAMPLE

SS-SPLIT SPOON SAMPLE

INTERFACE

--- APPROXIMATE INTERFACE

ORING I	CUENT LOCATION ELEVATION				/B-3,™	PROJ. NO. 1/FINISH 7 · 10 · 90 / 7 · 10 · 90 B-3 DATE 7 · 10 · 90 PG. / OF/	
EL	WATER EL./I	1	SAU	PLE		LOGGED BY	UATE CONTRACTOR OF THE CONTRAC
ព.	FT.	TYPE and NO.	BLOWS PER 6 IN.	PEN IN.	REC IN.	REMARKS	SOIL AND ROCK DESCRIPTIONS
	-						8" Concrete slab (6" reinforced me
	1 2		· · · · · · · · · · · · · · · · · · ·				FILL - widely graded sandy ground, brown
	<u>-</u> 3	4					
	F-1-7	Managaran 22	1 2 3	24	10	51LT TIP - 175ppm	MCLAY-moderately elastic, tittle fine to median sand and course ground, brown and black.
) 	55-2	l l	24	5.5	51.2 Tip-50 ppm	y CLAY-moderately elosic, trace widely graded soul and gravel, brown and black.
	F 8 F 6	AMMANANAMANAMANAMANAMANAMANAMANAMANAMAN	3 4 6	λY	23	TIP-64 pp-	CLAM - moderately elastic, tittle medium of coarse sand, gray.
	(0	SS-4	# 8 14 16	24	24	TIP-35 ppm	sicry cca4 - low elasticity, little fin to medium sand, trace wideling rad gravel, brown and gray
	- 12 - 13	Aller Change Control of the Control	7 13 15	24	18	TIP-15 ppm	SILTY CLAY - SIMILAR TO SS-Y,
) Y						Bottom or Borents - 13'. Buckfilled and sealed with benton ite at 11 feet, well installed at approximately 10' 8".

BLOWS PER 6" -140 LB. HAMMER FALLING 30" TO DRIVE A 2.0 IN. 0.0 SPLIT SPOON SAMPLER
PEN-PENETRATION LENGTH OF SAMPLER OR CORE BARREL
REC-RECOVERY LENGTH OF SAMPLE
SS-SPLIT SPOON SAMPLE

GROUNDWATER

	M	A INC.	MABBETT, CAPACCIO & ASSOCIATES, INC. CONSULTANTS AND ENGINEERS 5 Alfred Circle Bedford, Massachusetts 01730 (617)275-6050								
			(NGVD)	NA		CB-4	LOCATION DATE START, DRILLED BY	/FINISH_7.11.20 / 7.11.20	B- 4 PG. / OF /		
	£L П.	DEPTH FT.	TYPE and NO.	SAM BLOWS PER 6 IN.		REC IN.	REMARKS	SOIL AND ROCK DESCRIPTION			
		E						8.5" Concrete Slab (6" re	inforced resh)		
		- 2						FILL - SIMILAR TO SS-1	-		
		5 4	Sharman Charles	2 2 2	24	7	TIP - 54ppm	FILL - widely graded grave little silt, black, gra	thy sand, gandbrown.		
		- - - - 7	SSZ	2 2 4 9	24	<1	Soil suturated with greenth oil. Tip-125ppm	FILL - S.MILAR TO SS-1	-		
			S. S.	9999	24	13	TIP- 90 pp-	little silty chan, brow dark gray.			
		- 10	55-4	2 7 7 8	24	1	TIP- 50pp	TILL - SIMILAR TO SS-S			
		- - - - - - - - - - - - - - - - - - -	55-5	13 13 13	24	20	TIP-50 PP-	Free - widely graded sandy trace silt, brown.	gravel,		
		= 'y = 'y						Augen refusal at 13°. Suspected concrete hold-d Backfilled with nateural mo No well installed.			
r			<u> </u>				_				

BLOWS PER 6" -140 LB. HAMMER FALLING 30" TO DRIVE A 2.0 IN. 0.0. SPLIT SPOON SAMPLER PEN-PENETRATION LENGTH OF SAMPLER OR CORE BARREL

REC-RECOVERY LENGTH OF SAMPLE

SS-SPLIT SPOON SAMPLE

ROD-LENGTH OF SOUND CORES >4 IN./LENGTH CORED.7

GROUNDWATER

INTERFACE

APPROXIVATE INTERFACE

-	M	A INC.	MABI	BETT, is and eng		PAC(SOCIATES, INC
	PROJECT BORING I					(B-5, n	LOCATION	PROJ. NO
		ELEVATION WATER EL./					DRILLED BY	DATE 7.12.90 PG. OF
	£. гт.	DEPTH FT.	TYPE and NO.	SAN BLOWS PER 6 IN.	(PLE PEN IN.	REC IN.	REMARKS	SOIL AND ROCK DESCRIPTIONS
		-						7" Concrete slab (6" reinforced mesh) -
	·	F 2						FILL - Sandy Silt, some course growel
		Ey	1 SS-1	477	24	19	TIR-190PF= *	FILL - widely graded sandy clay, some silt, black.
		-6	55-Z	2 2 2 2 2	24	17		from - moderately clashi trace fine to medium - sand, borown and group.
		E 8	\$ -32	4	24	20	51 TIP-75PPn+	graves brown,
		E to	S5-4	W. 000.	24	24	TIP-MS.pon & S	trum - miderately elastic, some widely graded - sandand fire gravel, brown termy - low elasticity, track to little widely scaded sand and accord trace
		-12	SS-5	10	24	24	Tip-88pp=+	Graded sand and gravel, trace - state, brown and gray.
		-14						
	:	-16					5.1	more elastic with depth.
		_18) .) .			
	• .	- -20	SS-6	10 22 22	24	24	TIP-NA ST	to little widely graded gravel, gray.
	,	- -22 -						BOTTOM OF BORING - 21' Backfilled with natural fill, 2' bentonite seal installed to 8',
								Well installed at approximately 7'8".
		-					:	
		-						

BLOWS PER 6" -140 LB. HAMMER FALLING 30" TO DRIVE A 2.0 IN. 0.0. SPLIT SPOON SAMPLER
PEN-PENETRATION LENGTH OF SAMPLER OR CORE BARREL
REC-RECOVERY LENGTH OF SAMPLE
SS-SPLIT SPOON SAMPLE

ROD-LENGTH OF SOUND CORES >4 IN./LENGTH CORED.X

GROUNDWATER

OUND ELEVATIO OUNDWATER EL EL DEPT FT. FT.	/DEPTH				DRILLED BY	/FINISH 7-11-90 17.11-90 8-6
1					LOGGED BY	
	TYPE and NO.	SAM BLOWS PER 6 IN.	PLE PEN IN.	REC IN.	REMARKS	SOIL AND ROCK DESCRIPTIONS
						8" Concrete Slab (6" reinforced mesh) FILL - sandy silt, little widely graden gravel, brown.
1	S -1	2 2	24	0	TIP- NA	
	55-2	2 3 3 5	24	4	T.p-40pp~	True - medium sand, little widely graded gravel and silt, light brown.
	MANAMAN S	3 5 7 8	24	16	Tip-37 ppm	FILL - widely graded sandy gravel, little silt, grayish brown.
(0	55-4	2 3 4 6	24	13	TP-32 pp-	FILL - widely graded souly gravel, trace silt, brown.
-12	S S	2575	24	20	Tie-31ppm	FILL - widely graded gravelly sand, trace silt, light brown.

BLOWS PER 6" -140 LB. HAMMER FALLING 30" TO DRIVE A 2.0 IN. O.D. SPLIT SPOON SAMPLER PEN-PENETRATION LENGTH OF SAMPLER OR CORE BARREL REC-RECOVERY LENGTH OF SAMPLE

SS-SPLIT SPOON SAMPLE

ROD-LENGTH OF SOUND CORES >4 IN./LENGTH CORED.X

GROUNDWATER

ROUNDWA	CATION EVATION TER EL./D		SAM		в-7, то	LOCATION DATE START, DRILLED BY LOGGED BY	/FINISH 7/13/90 / 7/13/80 B-7 DATE 2/13/90 PG. 1 OF
EL FT.	DEPTH FT.	TYPE and NO.	BLOWS PER 6 IN.	PEN IN.	REC IN.	REMARKS	SOIL AND ROCK DESCRIPTIONS
-							8" Concrete Slab (6" reinforced mes)
	-1						
	-3 -4 &	SS SS	2546	24	20	TIP-NA	g CLAY - moderately elastic, little widely grassed and gravel, brown
	_(,	1,55-2	1245	24	20	Tie-NA	SILTHCLAY - SIMILAR TO SS-1.
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	C. C.	3712	γç	24	tie-NA	SILTY CLAY - moderately elastic, trace for sand and widely graded gravel, brown.
	- lo	55-4	4 11 15 17	24	20	TIP-NA	SILTY CLAY - moderately elastic, trace fine 5 and, brown and gray.
	·12	22-25	6 12 17 19	24	24	TID-NA	SICTY CLAY - moderately elastic, trace fin sand and widely graded grave brown and gray.
	(3						Bottom of BORING - 13! Backfilled and sealed with bentonite to approximately 8; well installed at approximately 7954

PEN-PENETRATION LENGTH OF SAMPLER OR CORE BARREL

REC-RECOVERY LENGTH OF SAMPLE SS-SPLIT SPOON SAMPLE

N			O & ASSOCIATES, Bedford, Massachusetts 01730 (617)275-	
	MONITORING W		ATION REPORT	MCA22
			DBERG PROJ. NO. 87024.03	PG. / OF /
	CATION 1976 N. Rul			2 2
CO	NTRACTOR DEG DRILLING	1	1 - 10	
LO	GGED BY GLO	DATE	/13 /90	LOCATION SEE SITE
сн	ECKED BY	DATE	*	PLAN
			FLUST BLEVATION— TOP OF CASIN ELEVATION—TOP OF RISER I	PIPE 634.04 - 3.75
	FIL - widely goded sand		DEPTH-TOP OF CONCRETE- 1.D. OF SURFACE CASING TYPE OF SURFACE CASING	D.667' STEEL
d) SCALE)	graded sand and gravel with little silt; grayish brown to approx?		DEPTH-BOTTOM OF CASING DEPTH-TOP OF BACKFILL LD. OF RISER PIPE TYPE OF RISER PIPE DIAM. OF BOREHOLE	2" Puc sc#.40 0,5625'
GENERAL SOIL CONDITION (NOT			DEPTH-TOP OF SEAL TYPE OF SEAL DEPTH-TOP OF SAND PACK TYPE OF SAND PACK DEPTH-TOP OF SCREEN TYPE OF SCREENED SECTION I.D. OF SCREENED SECTION	3,58°

Said to have installed 7'screen from 10'. DEPTH-BOTTOM OF WELL

DEPTH-TOP OF SEAL, IF ANY

DEPTH-BOTTOM OF BOREHOLE

TYPE OF SEAL

150 F BEMONITE

13'

•		CAPACCIO & A		
N.		ASSESSMENT PLINDERS PRI	' !	MCA-1
	LOCATION 1975 N.RVBY. "ST			PG/OF/
	CONTRACTOR D&G DRICCING	DRILLER B. THOM	Asson	BORING NO. B-1
	LOGGED BY GLO	DATE 07/09/90		LOCATION SER SITE
	CHECKED BY	DATE		PLAN
	11.00.1160			l Juli
	Harry USED>		_ ELEVATION— TOP OF CASING	(nd H
÷			_ elevation—top of riser p	/ / 22
	prounted			
		\$ <u> </u>	— ELEVATION—GROUND SURFAC	
				- 400 Yh
			+ DEPTH+ TOO DE CONCRETE	
.*	Pill-		•	
	widely graded		- I.D. OF SURFACE CASING	0,667
	Gravelly sond		- TYPE OF SURFACE CASING	STREL
	App to approximately 3' below grade, brown.			· · · · · · · · · · · · · · · · · · ·
	1) Selow grane, ordan.			0.625'
(CYCLAM		OEPTH-BOTTOM OF CASING - DEPTH-TOP OF BACKFILL	0,623
ا ج	Elastie min		- I.D. OF RISER PIPE	2"
V J	Stratified with			PVC Sch. 40
	Stratified with		— Type of Riser Pipe	5 F14 F1
	a trace to little mach		- DIAM. OF BOREHOLE	0:56251
	landed an link		- TYPE OF BACKFILL	BENTONITE
ĺ	ON clayalatives, brown and gray, to 20'.	[22]		cipy
	\$ 5 my , to 20'.	65H 5H	•	
	ONO		_ DEPTH-TOP OF SEAL	
			- TYPE OF SEAL	BENTONITE
	SOIL		_ DEPTH—TOP OF SAND PACK - TYPE OF SAND PACK	SILICA
	GENERAL		_ DEPTH-TOP OF SCREEN	10 SLOT PVC
	GEN		- TYPE OF SCREENED SECTION	ch, 40
. }			I.D. OF SCREENED SECTION	2"
1	*			
_	Claus SIL - Strat fredis			
				aon -1
	trace this sandond growly		DEPTH-BOTTOM OF WELL	- 9.865
Claymi	Clayer Silt - structified in frace fine sandendgravely where gray to 26.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	DEPTH-TOP OF SEAL, IF AN	~10.25'
			- TYPE OF SEAL	BENTONITE &
			DEPTH-BOTTOM OF BOREHOL	_E 26'

	, CAPACCIO & GINEERS 5 Alfred Circle Bedford, Mas		
MONITORING W PROJECT/CUENT PUMP HOUSE AS	ELL INSTALLATION		MCA-3
LOCATION 1975 NiRuby St.		PROJ. NO. <u>0 700 7. 03</u>	PG//
CONTRACTOR D&G Drilling	<i>(</i>	Allon	BORING NO. B-5
LOGGED BY GLO	DATE 7/12	190	LOCATION SEE SITE
			PLAN
CHECKED BY	DATE		
Fill-widely graded Sandy gravel some Sit on the stand of		ELEVATION—TOP OF CASING— ELEVATION—GROUND SURFACE DEPTH—TOP OF CONCRETE S I.D. OF SURFACE CASING TYPE OF SURFACE CASING DEPTH—BOTTOM OF CASING—OEPTH—TOP OF BACKFILL— I.D. OF RISER PIPE TYPE OF RISER PIPE DIAM. OF BOREHOLE TYPE OF BACKFILL DEPTH—TOP OF SEAL TYPE OF SEAL DEPTH—TOP OF SCREEN TYPE OF SCREENED SECTION I.D. OF SCREENED SECTION OEPTH—BOTTOM OF WELL DEPTH—TOP OF SEAL, IF ANY TYPE OF SEAL DEPTH—TOP OF SEAL, IF ANY TYPE OF SEAL OEPTH—BOTTOM OF WELL DEPTH—TOP OF SEAL, IF ANY TYPE OF SEAL	0.667 STEEL 0.625' PVC Sch. 40 0.5625' BENTONITE 1.5' 5:LICA 2.35' 10 SLOT PVC ch. 40 2"

DEPTH-BOTTOM OF BOREHOLE

TYPE OF SEAL

N	MA	MABB	ETT,	CA	\mathbf{P}	ACC	:IO &	ASSOCIATES	, I	NC.
ľ	INC.	CONSULTANTS	AND ENG	ineers	5 Ali	red Cir	cle Bedford, V	lassachusetts 01730 (617)275-	-6050	
	MON	IITORIN	G WE	ELL	N:	STA	LLATIO	N REPORT	Π	MA-4
PRO	JECT/CLIENT A	PUMP HOUS	E ASSI	Cssmen	1	/LIN	osen,	- PROJ. NO. 870 24 93	<u>: </u>	
		5 N. Rus							·	GOF/
CON	TRACTOR DA	6 Dril	ling			DRILLER	B. Thon	nation	Во	RING NO. B-6
LOG	CED BY	<u>600</u>			······	DATE	7/11	190	lo	CATION SEE SITE
1	CKED BY					DATE	' '	·		PLAN
-									Ш.	11 . t
}		18/	(11)	156	7		1	ELEVATION— TOP OF CASI	uc	634.34
}		/ ['						ELEVATION—TOP OF RISER		634.0-3
		(4/				11	/			~ 634.34
						11		ELEVATION-GROUND SURF	ALE	
N.		KIKIN	NV.					DEPTH-70P OF CONCRETE	- FEW	
1	\ <i>\</i> \\\\	:<\\\\\	%%	40				XXX DEL HI-YOM OF CONDECTE	25 FF	
										0.17
	FILL	· ΛΛ .]	I.D. OF SURFACE CASING		0.67
		ellysand						TYPE OF SURFACE CASING	;	STERC
		le silt on							٠	
	clay,	brown g	ray					OEPTH-BOTTOM OF CASING	•	0,6251
	and	stack.					d< 	DEPTH-TOP OF BACKFILL-		
	6	Le budd-d	bw ~				<u> </u>	I.D. OF RISER PIPE		
	parl	susperte	-d			==	:	TYPE OF RISER PIPE	*. 	PUC Sch. 40
SCALE)	cun su	e of refu	sal	; -		= =	<u>.</u>			0.5625'
욛	at 1	Χ,						DIAM. OF BOREHOLE		BENTONITE CLAY
N N			•	€ = = [:: ::		TYPE OF BACKFILL		, , , , , , , , , , , , , , , , , , ,
3				===			1	-		
CONDITION (NO						<u></u>		·		10 m
. 1				177		1//		DEPTH-TOP OF SEAL TYPE OF SEAL		BENTONICE
Sol						///		DEPTH-TOP OF SAND PACE TYPE OF SAND PACK	ĸ	1,751 SILICA)
¥						•		DEPTH-TOP OF SCREEN		2.751
GENERAL	* .					*****		TYPE OF SCREENED SECTION	N VZ	110 SLOT PUC
			1,60		=		i. I	I.D. OF SCREENED SECTION		2 7
				ļ	Ξ			,		
							 L	+		
			:	l::::::	≣		[* . :			
		<i>1</i>	t		=			DEPTH-BOTTOM OF WELL		9.75
	•			<u>[</u>	•••••		···	DEPTH-TOP OF SEAL, IF A	NY	1.101
- 1		•		<i>\:/://</i>	///	(//)	. <u> </u>	TYPE OF SEAL		BENTO NITE

- TYPE OF SEAL

DEPTH-BOTTOM OF BOREHOLE

-		MGINEERS 5 Alfred Circle Bedford,)	·	150
_		VELL INSTALLATIO		mc4-5
	CATION 1975 N. Ruby St	, ,	_ PROJ. NO	PG. 7 OF 7
	DATRACTOR DEG Drilling	·		to +1
1	_ ~	DRILLER B. Tho.	. 11	BORING NO. $15 - 7$ LOCATION $SEE SIT$
LO	CCED BY	7	/90	LOCATION SIZE ST
Ct	ECKED BY	DATE		
				634.49
	Clark	_ (ELEVATION- TOP OF CASING	1 211 10
	1 / mo		ELEVATION—TOP OF RISER PIF	N/ 30 00
	\ '		ELEVATION-GROUND SURFACE	7-624.47
	TRIKININ		Sh/1/1	7/24749
	/ <i>\</i> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		DEPTH-TOP OF CONCRETE SE	All bridge
	E			
	Fice		I.D. OF SURFACE CASING	0.67
	21 Hyrash 1 some		TYPE OF SURFACE CASING	STEEL
	Sitty ash some wodely graded sand and growel black to approx. 3'			
	gravel black to			01-1
	approx.3		OEPTH-BOTTOM OF CASING — DEPTH-TOP OF BACKFILL	> 0.625'
	y cury - stratified		44	2 "
7111	y cong		I.D. OF RISER PIPE	PUC Sch 40
SCALE)	moderately elastic) with soither widely		TYPE OF RISER PIPE	
	with softe widely		DIAM. OF BOREHOLE	0,5625'
07 TO	1 9 CLAY M. LL. 10-V		TYPE OF BACKFILL	Bentonite
IZ	Blown so abbox			CLAY
	y cian	655 (55i		£
S S			DEPTH-TOP OF SEAL	0.51
	y clary		TYPE OF SEAL	BENTONION 1.4'
3	T elastic with		DEPTH-TOP OF SAND PACK TYPE OF SAND PACK	SILICA
GENERAL	Stratified trace widely graded Soul and gravel clay mixtures brown & gray to		DEPTH-TOP OF SCREEN	10 Slot PU
핗	God of the sale		TYPE OF SCREENED SECTION	s.h 40
- 1	clay mixthres		I.D. OF SCREENED SECTION	2"
	brown & gray to	=		
	13/1		· ·	
			DEPTH-BOTTOM OF WELL	7.79
		***************************************	DEPTH-TOP OF SEAL, IF ANY	8.25'
			TYPE OF SEAL	BENTONFT
	٨		DEPTH-BOTTOM OF BOREHOLE	137 - SAND
į.			The second of designation	

. .

A CONTRACT TOTAL OF THE CONTRACT OF THE CONTRA

MABBETT CAPACCIO

& ASSOCIATES, INC.

FIELD SCREENING SOIL SAMPLES

PROJ. WT MELLOSE PROJ. NO. \$7024,03

ACTIVITY NO.

CONSULTANTS AND ENGINEERS
5 Altred Circle Bedford, Massachusetts 01730

DATE 7/9-13/90

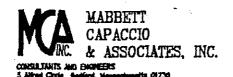
ALYSIS TOTAL COMMENTS VOC Blackish material in fill? Mo apparent Contamination Sides Sides Sides Sides Sides Sides
VOC Blockish material in till? No apperlar Contamination Sides Sides Sides
3 No apperent Costamirusin 4 Sives 5 St
Scortamiration 4 Sides 5 Sides 5 Si
5 sides 5 st 5 ss
5 of ss
5 samples udet
5 / /
\$ V V
300?
200 ? sight He agreed
200? smy be
210? smelt
21. ? V
140
175 WAT, 4C odor
50 Apparent Quechoil
by Running down sides or samples (55)
35 L

& ASSOCIATES, INC.

FIELD SCREENING SOIL SAMPLES

PROJ. HE-MELROZA PROJ. NO. 87024.03

ACTIVITY NO.


CONSULTANTS AND ENGINEERS
5 Alfred Circle Bedford, Massachuselts 01730

SA	MPLER:	Gu		5.4.	ANALYS	66			7 fg-13/90
	S	SAMPLE	•			FII	ELD AN	IALYSIS	- 1
I.D. NO.	LOCATION	DEPTH INTERVAL (FT.)	DATE	TIME (HRS)	темр. С	SPEC. COND. UMHOS/CM ²	pH S.U.	TOTAL VOC	COMMENTS
B3	45-5	11-13	7.10	17:00				15	
	15A-61	15-1A	1	n 1		1		7	1
	165 × 1	14-2				101			V (
8-4	55-1	3-5	7-11	11:00				54	
	SS-2	5-7	7.11	Nilo				125	HC SDOR
	55-3	7-9	7-11	11:2X	5	\times		90	√
	55-4	9-11	7-11	11:40				5.0	V, slight
·	55-5	11-13	7·4	11:45	8			50	1
B-5	55-1	3-5	7.12	11:05		·	<i>J</i> .	190 ?	No HC O Doe
•	55-2		7-12	11-20				150 ?	
	55-3	7-9	7.12	11:35				75?	·
	55-4	8-11	7.12	N:50.				145 3	
	55-5	[]-/3	7-12	12:00				883	
	55-6	19-21	7.12	12:30				×	
3-6	45-1	3-5	7.11	M	~				No Recovery
	SS-2	5-7	7.11	14 = 35			5/	цp	light He Odor
	55-3	7-9	7.11	14,40	*			37	Slight oder
	55-4	9-11	7.11	14:58				32	No odoki

ACTIVITY PROJ. LHT Melray NO. FIELD SCREENING PROJ. NO. 87024,03 SOIL SAMPLES & ASSOCIATES, INC. CONSULTANTS AND ENGINEERS 5 Alfred Circle Bedford, Massachusetts 01730 Gw Glo ANALYST: SAMPLER: **SAMPLE** FIELD ANALYSIS DEPTH SPEC. pH S.U. TOTAL I.D. TEMP. TIME COMMENTS COND. 2 UMHOS/CM LOCATION INTERVAL DATE NO. VOC .C (HRS) (FT.) No odor 3/ 11-13 7.11 Not screened 7.13 55-1 7.17 55-2 7.13 55-4 7-13 53-5 11-13 7.13

NOTES:

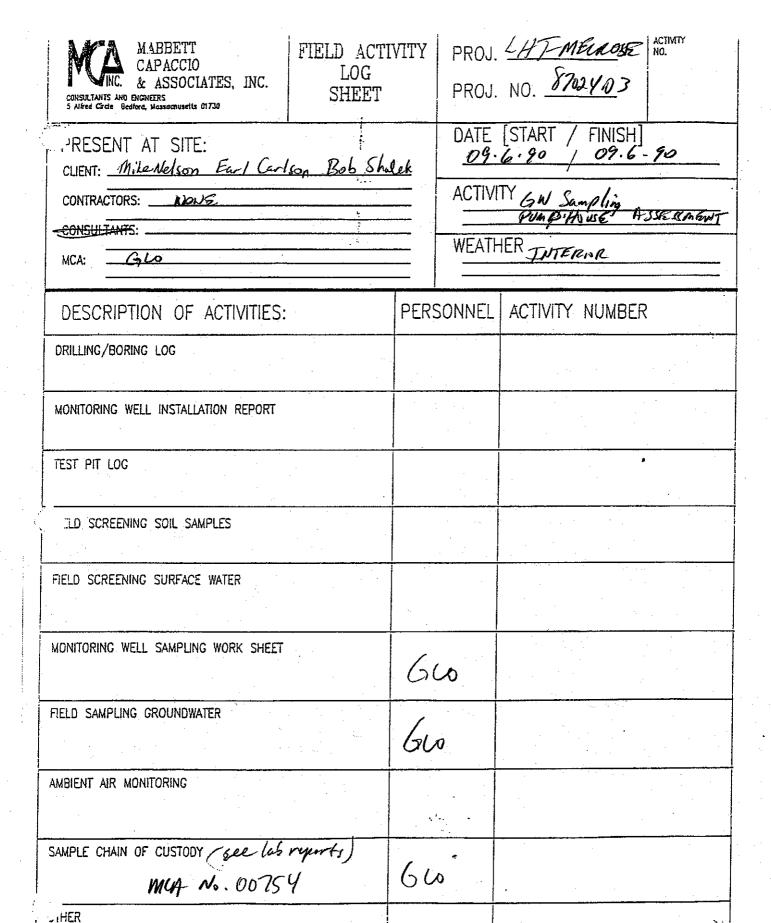
ŧ

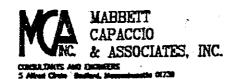
AMBIENT AIR MONITORING

PROJ. LHT-MELROIX

ACTIVITY NO.

PROJ. NO. 87024.03

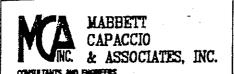

SAMPLER:


Guo

ANALYST: GLO

DATE 1/9-/90

<u> </u>			<u> </u>				1/13/20
	SAN	MPLE			F	TELD ANAL	YSIS
NO.	LOCATION	DATE	TIME (HRS)	TEMP. C	WIND	TOTAL VOC/CO	COMMENTS
	B-1 pump	7-9-90	~ /2:000			NA 0.5A	TIP READING (3) ERATIC
	B-/ P.A	7-9-90	14:30			NA JOS	11 (2.8)
	B-Z P.H.	J				0.9/0.5	
	B-3 P.H.	7-10-90	15:55			0.7/	
	13-3 P.H.	7-10-90	16:45			0.8/X	
	B-4 P.H.	7-11-90	11:05			1.0/60	Co value above TLV of 50 ppm. Reversed Fan to pull air out of room
	B-Y	7-11-90	U:40			1.5/5	Trillers took 5 min break CO below 50pp. Asked drillers if O.h., yes, continued.
	B-6	7-11-90	14:20			0.4/+	
	B-6	7-11-90	14:50			1.1/5	
	Pump House (P.H.)	7-12-90	8:30 gm			13/5	
	P.H.	7-12-90	13:00			X/8	
	B-7	7-13-90	10:00 A			0.9/0.5	
					·		

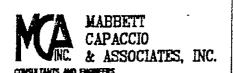


SAMPLING

MONITORING PROJ. LHT-MELLOSE PARTY WELL PROJ. NO. 87021.03

····,	_MPLER:	60	from to	pol ANAI	LYST:	n 10		9.6.90
	WELL NO. MCA)-#	DEPTH OF BOITOM OF WELL (FT.)	DEPTH TO	WATER COLUMN (FT.)	INSIDE WELL DIAMETER (INCHES)	CONVERSION 1 FACTOR	SINGLE WELL VOLUME	MINIMUM PURGE VOL (3 WELL VOLUMES)
В	MW-1	9625	3.7	5.925	2	163 Kg	0,97	2.9
8-3		10,583+	3.95	6.63	2	.163	1.08+	3.25
в.	mw-3	7.35	3.4	3.95	2	.163	0.640	1.95
8	MW-Y	9.75	3.4	6.35	2	. 163	1.04	3.14
ß	n Mws	7.4	6.9	0.5	2	./63	0.08+	0.25
: (
		· · ·						
-								
·								
İ								

^{1. 2&}quot; ID WELL HOLDS 0.163 GALLONS/LINEAR FOOT
1.5" ID WELL HOLDS 0.092 GALLONS/LINEAR FOOT
2. 1 GALLON = 231 CUBIC INCHES


FIELD SCREENING GROUNDWATER

PROJ. NO. <u>\$7024.03</u>

actimity No.

ĺ	SAMPLER: GC	2		ANALYS	it: G	60	·	DATE 9.6.90
	PURGE METHOD	PURGE V	OLUME			FIELD A	ANALYS	IS
	SAMPLING METHOD	NUMBER OF WELL VOLUMES REMOVED	CUMULATIVE VOLUME PURGED (GALLONS)	ТЕ <u>м</u> Р. С	SPEC. COND. , UMHOS/CM	pH S.U.	TOTAL VOC	COMMENTS
	WELL NO. (B-1) MW-1 (mca-1)	1	1.0	24.9	6.84	1030	5	Brown-gray sediment slow recharge
į	WELL VOLUME: 0.97gals	2	2	24.3	6.96	1030		
Ī	TIME: 11-11:40	3	2. gdry	a <i>y.</i> 3	6.92	1025		
	WELL NO. (8-5) MW-3 (MIG-3)	1	1.75	26.8	7.03	1120		Egayish tan sed mont Slow rechange
j	WELL VOLUME: 0,64 gal	2	1.4	27.4	7.14	nzo		(sections)
	WE: 11:45-12:10	3	N2	25.7	7.06	1110		
	WELL NO. (3-6) MW-y (McA-4)	1	1.1	28.2	7.4	900		tanish sediment (V. lit
	WELL VOLUME: 1,04 gal	2	1.6 day	25.8	7.23	885		
-	TIME: 12:15-12:55	7	2.1 dry	258	7,20	870		H
	WELL NO. (B-7) MW-5 (ALA-5)	/	0.1/+	28.3	7.03	3580		1. yellowish v. little to no silt
	WELL VOLUME:	2	0,2 -Dry		6.99	3520		V. slow rechage
	TIME: 14:15-15:25	3	0.3 5- Dry	28.5	7.23	3500		L

^{1.} WELL VOLUMES TAKEN FROM "MONITORING WELL SAMPLING" WORKSHEET.

FIELD SCREENING GROUNDWATER

PROJ. LAT Melose

PROJ. NO. 87024.00

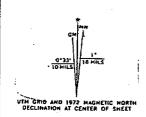
ACTIVITY NO.

| SAMPLER:

Gu

ANALYST:

610


DATE 09.6.9

JAMPLEN.			WALLS	· Cole	/ 		10,0.70
PURGE METHOD					FIELD /	ANALYS	IS
SAMPLING METHOD	WELL VOLUMES REMOVED	CUMULATIVE VOLUME PURGED (GALLONS)	ТЕ <u>М</u> Р. С	SPEC. COND. , UMHOS/CM	pH S.U.	TOTAL VOC	COMMENTS
WELL NO. (B-2) MW-2 (MCA-2) WELL VOLUME:	1	1.1	27./	6.86	1040		NY" Free Product (Orench Oil)
WELL VOLUME: 1.09 gal TIME:	2	2.2	27./	6.91	1000		
TIME: 15:30 - 16:15	3	3.3	27.2	6.92	1020		V
WELL NO.				: "	<i>;</i> .		
WELL VOLUME:							
.īME:							
WELL NO.							
WELL VOLUME:		·					
TIME:		·					
WELL NO.							
WELL VOLUME:							
TIME:							

NOTES:

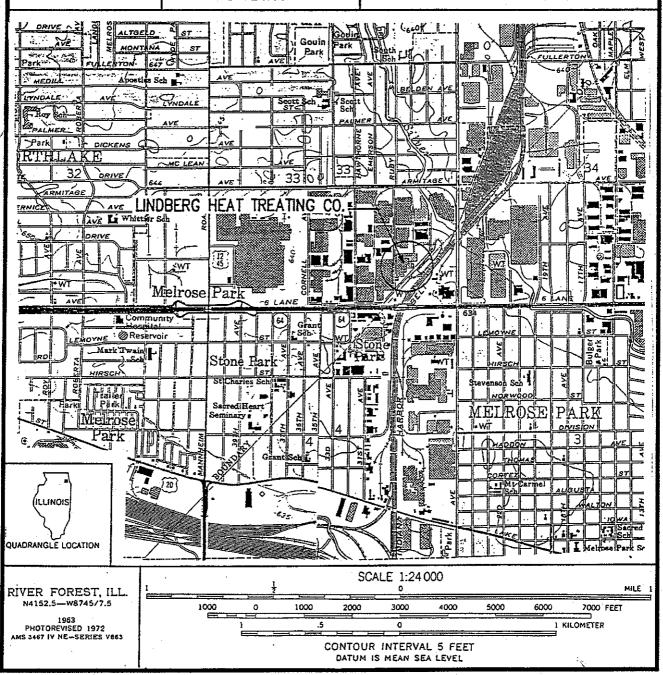
*

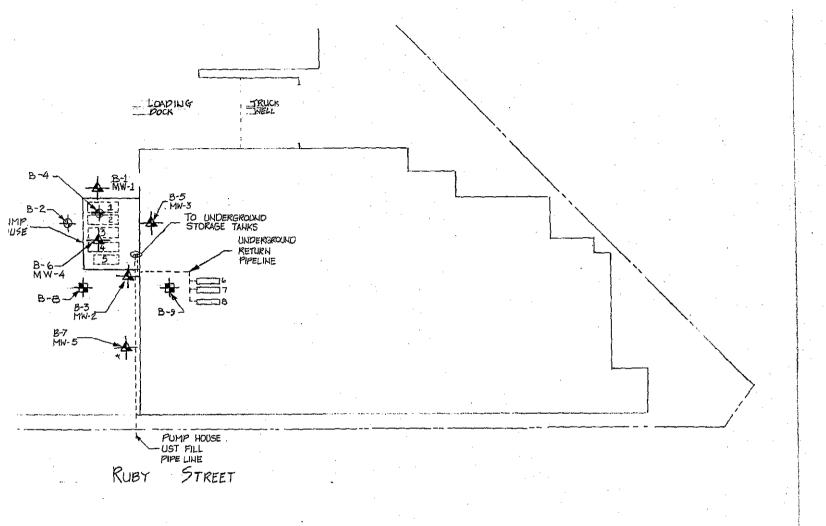
^{1.} WELL VOLUMES TAKEN FROM "MONITORING WELL SAMPLING" WORKSHEET.

MABBETT CAPACCIO WC. & ASSOCIATES, INC.

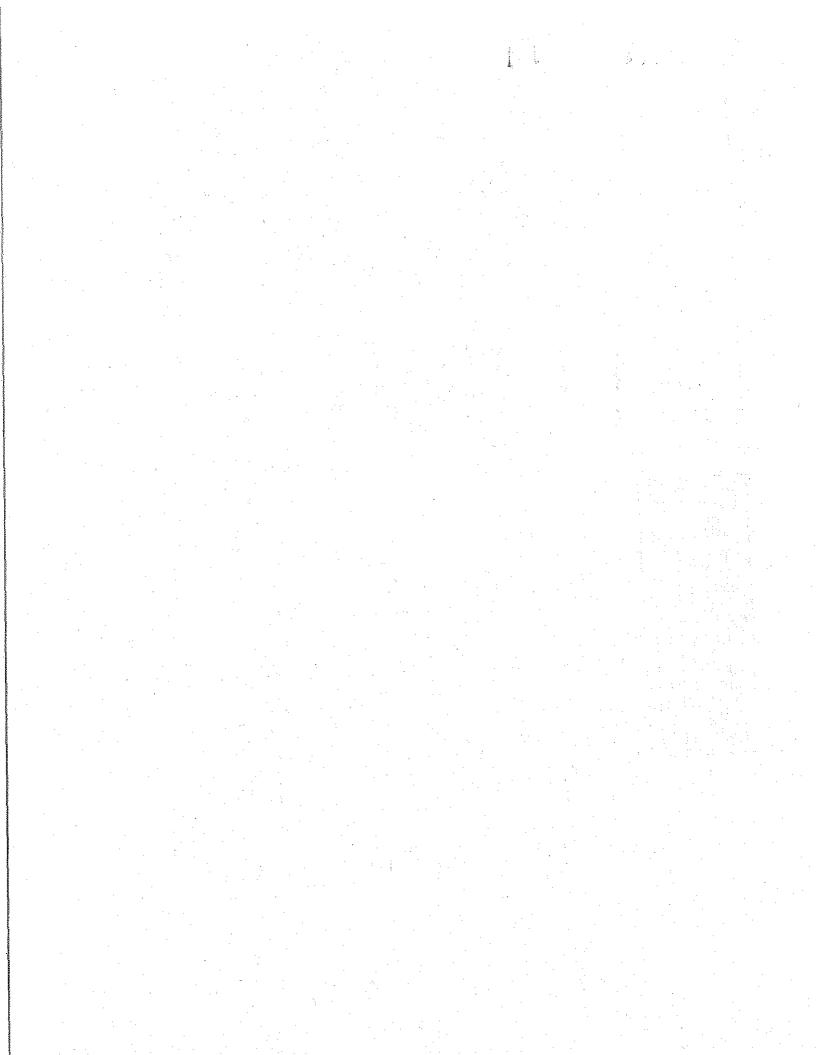
5 Alfred Circle Bedford, Massachusetts 01730

PROJECT NO.


87024.03


PROJECT: LINDBERG HEAT TREATING CO.

LOCATION: MELROSE PARK, ILLINOIS 60160


TITLE: FIGURE I-1 - SITE LOCATION MAP

UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

	}				
		<u> </u>			
	}	! 		 	
2	11/2/90	FOR REGULATORY REVIEW	H5W	GLO	RSL
1	2/1/90	FOR REGULATORY REVIEW	H5	GLO	LEL
NO.	DATE	DESCRIPTION	DRN	CHK	APP
		REVISION			

